Maths Guide https://maths.guide/ Math.Guide: Your one-stop solution for school math problems. Get step-by-step answers to ace your math assignments and exams! Wed, 26 Feb 2025 19:18:07 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.2 224044792 DAV Class 7 Maths Chapter 8 Brain Teasers https://maths.guide/dav-class-7-maths-chapter-8-brain-teasers/ Wed, 26 Feb 2025 19:18:07 +0000 https://maths.guide/?p=580 DAV Class 7 Maths Chapter 8 Brain Teasers Triangle And Its Properties Brain Teasers

The post DAV Class 7 Maths Chapter 8 Brain Teasers appeared first on Maths Guide.

]]>
DAV Class 7 Maths Chapter 8 Brain Teasers

Triangle And Its Properties Brain Teasers


1. A. Tick (✔) the correct option.

(a) In \( \triangle ABC \), \( AB + BC > \) ___________.

(i) \( AB \)

(ii) \( BC + AC \)

(iii) \( AC \)

(iv) None

Solution

\( AB + BC > \color{red} AC \)

The sum of the lengths of any two sides of a triangle is greater than the length of third side.

Answer \( {\color{orange} (iii)} \ \color{red} AC \)

(b) The centroid of a triangle divides each median in the ratio—

(i) 2 : 1

(ii) 2 : 3

(iii) 3 : 1

(iv) 1 : 3

Answer \( {\color{orange} (i)} \ \color{red} 2:1 \)

The centroid divides each median in the ratio \( \color{red} 2:1 \)

(c) The hypotenuse of a right triangle is 17 cm and one of the sides is 8 cm. The other side is—

(i) 16 cm

(ii) 12 cm

(iii) 13 cm

(iv) 15 cm

Solution

\begin{align*} \text{Pythagoras theorem} \\ \color{magenta} \text{(Side 1)}^2 + \text{(Side 2)}^2 &= \color{magenta} \text{(Hypotenuse)}^2 \\ 8^2 + x^2 &= 17^2 \\ 64 + x^2 &= 289 \\ x^2 &= 225 \\ x &= 15 \\ \end{align*}

Answer \( {\color{orange} (d)} \ \color{red} 15 \text{ cm} \)

(d) The point of concurrence of the altitudes of a triangle is called—

(i) Orthocentre

(ii) Circumcentre

(iii) Centroid

(iv) Incentre

Answer \( {\color{orange} (i)} \ \color{red} \text{Orthocentre} \)

The point of concurrence of the altitudes of a triangle is called the \(\color{red} orthocentre \).

(v) In \( \triangle PQR \), if \( \angle PRS \) is an exterior angle at R, then the interior adjacent angle at R is—

(i) \( \angle RQP \)

(ii) \( \angle QPR \)

(iii) \( \angle PRQ \)

(iv) \( \angle PQR \)

Solution

The adjacent interior angle to an exterior angle is the opposite interior angle.

Answer \( {\color{orange} (iii)} \ \color{red} \angle PRQ \)

B. Answer the following questions.

(a) What is the point of concurrence of the angle bisector of a triangle called? Where does it lie?

Solution

The point of concurrence of the angle bisectors of a triangle is called the incentre of the triangle. Since the angle bisectors of a triangle will all lie in the interior of the triangle, the incentre of a triangle always lies in its interior.

(b) The vertical angle of an isosceles triangle is 80°. Find the measurement of its base angles.

Solution

Let the base angles be \( x \) each. \begin{align*} 80 + x + x &= 180 \text{ (Angle sum property)}\\ 80 + 2x &= 180^\circ \\ 2x &= 180 - 80^\circ \\ 2x& = 100^\circ \\ x& = \frac{100^\circ}{2} \\ x &= 50^\circ \end{align*}

Answer Base angles are \( \color{red} 50^\circ,50^\circ \)

(c) Find the value of \( x \) and \( y \) in the given figure.

Solution

\begin{align*} x + 50^\circ &= 120^\circ \text{ (Exterior angle property)} \\ x &= 120^\circ - 50^\circ \\ x &= 70^\circ \\ \\ y + 120^\circ &= 180^\circ \text{ (Linear pair)} \\ y &= 180^\circ - 120^\circ \\ y &= 60^\circ \end{align*}

Answer \( \color{red} x = 70^\circ, \ y = 60^\circ \)

(d) Can the line segments 1.5 cm, 2 cm, and 2.5 cm be the sides of a right-angled triangle?

Solution

\begin{align*} \text{Longest side} & = 2.5 \ cm \\ \text{Side 1} & = 2 \ cm \\ \text{Side 2} & = 1.5 \ cm \\ \text{Pythagoras theorem} \\ \color{magenta} \text{(Side 1)}^2 + \text{(Side 2)}^2 &= \color{magenta} \text{(Hypotenuse)}^2 \\ 2^2 + (1.5)^2 &= (2.5)^2 \\ 4 + 2.25 &= 6.25 \\ 6.25 &= 6.25 \end{align*}

Answer \( \color{red} \text{Yes} \), the given are sides of a right-angled triangle.

(e) Where does the circumcentre of a right-angled triangle lie?

Answer In a right angled triangle, the circumcentre is at the mid-point of the hypotenuse.

2. A man goes 5 m in east and then 12 m in north direction. Find the distance from the starting point.

Solution

\begin{align*} AC & = x \\ AB & = 5 \ m \\ BC & = 12 \ m \\ &\text{Pythagoras theorem} \\ \color{magenta} (AC)^2 &= \color{magenta} (AB)^2 + (BC)^2 \\ x^2 &= (5)^2 + (12)^2 \\ x^2 &= 25 + 144 \\ x^2 &= 169 \\ x &= 13 \ m \\ \end{align*}

Answer Distance from the starting point \( \color{red} 13 \ m \).

3. The width of a rectangle is 5 cm and its diagonal is 13 cm. What is its perimeter?

Solution

\begin{align*} In \ & \triangle \ ABC \\ AC & = 13 \ cm \\ BC & = 5 \ cm \\ AB & = x \\ \text{Pythagoras theorem} \\ \color{magenta} (AB)^2 + (BC)^2 & = \color{magenta} (AC)^2 \\ x^2 + (5)^2 &= (13)^2 \\ x^2 + 25 &= 169 \\ x^2 &= 169 - 25 \\ x^2 &= 144 \\ x &= 12 \ m \\ AB &= 12 \ m \\ \\ Perimeter & = 2(L+B) \\ & = 2(12+5) \\ & = 2 \times 17 \\ Perimeter & = 34 \ cm \end{align*}

Answer Perimeter \( \color{red} 34 \ cm \).

4. In the given figure \( \triangle PQR \) and \( \triangle SQR \) are isosceles.

(i) Find \( \angle PQR \) and \( \angle PRQ \)

Solution

\begin{align*} In \ & \triangle \ PQR \\ PQ &= PR \\ \text{Angles opposite to equal }& \text{sides of a triangle are equal}\\ \angle PQR &= \angle PRQ \\ \text{By the angle sum }& \text{property}\\ \angle P + \angle PQR + \angle PRQ &= 180^\circ \\ 30^\circ + \angle PQR + \angle PQR &= 180^\circ \\ 2 \angle PQR &= 180^\circ \\ 2 \angle PQR &= 180^\circ - 30^\circ \\ 2 \angle PQR &= 150^\circ \\ \angle PQR &= \frac{150^\circ}{2} \\ \angle PQR &= 75^\circ \\ \angle PRQ &= 75^\circ \end{align*}

Answer \( \angle PQR = {\color{red} 75^\circ} , \angle PRQ = {\color{red} 75^\circ}\).

(ii) Find \( \angle SQR \) and \( \angle SRQ \)

Solution

\begin{align*} In \ & \triangle \ SQR \\ SQ &= SR \\ \text{Angles opposite to equal }& \text{sides of a triangle are equal}\\ \angle SQR &= \angle SRQ \\ \text{By the angle sum }& \text{property}\\ \angle S + \angle SQR + \angle SRQ &= 180^\circ \\ 70^\circ + \angle SQR + \angle SQR &= 180^\circ \\ 2 \angle SQR &= 180^\circ \\ 2 \angle SQR &= 180^\circ - 70^\circ \\ 2 \angle SQR &= 110^\circ \\ \angle SQR &= \frac{110^\circ}{2} \\ \angle SQR &= 55^\circ \\ \angle SRQ &= 55^\circ \end{align*}

Answer \( \angle SQR = {\color{red} 55^\circ} , \angle SRQ = {\color{red} 55^\circ}\).

(iii) Find \( x \)

Solution

\begin{align*} x & = \angle PQR - \angle SRQ \\ x & = 75^\circ - 55^\circ \\ x & = 20^\circ \\ \end{align*}

Answer \( x = {\color{red} 20^\circ}\)

5. In the given figure \(\triangle PQR\) is isosceles with \(PQ = PR \). \( LM\) is parallel to \(QR\) with \(L\) on \(PQ\) and \(M\) on \(PR\). Give reasons for each of the following statements:

(i) \(\angle Q = \angle R\)

Answer Angles opposite to equal sides of a triangle are equal

\begin{align*} & In \ \triangle \ PQR \\ & PQ = PR \ (Given) \\ & \color{red} \text{Angles opposite to equal sides of a triangle are equal}\\ & \implies \angle Q = \angle R \end{align*}

(ii) \(\angle PLM = \angle Q \)

Answer Corresponding angles

\begin{align*} & In \ \triangle \ PQR \\ & LM \parallel QR \ (Given) \\ & PQ \ \text{(Transversal line)} \\ & \implies \angle PLM = \angle Q \color{red} \text{ (Corresponding angles)} \end{align*}

(iii) \(\angle PML = \angle R \)

Answer Corresponding angles

\begin{align*} & In \ \triangle \ PQR \\ & LM \parallel QR \ (Given) \\ & PR \ \text{(Transversal line)} \\ & \implies \angle PML = \angle R \color{red} \text{ (Corresponding angles)} \end{align*}

(iv) \( \angle PLM = \angle PML \)

Answer From (i) , (ii) and (iii)

\begin{align*} \angle Q &= \angle R \quad (i) \\ \angle PLM &= \angle Q \quad (ii) \\ \angle PML &= \angle R \quad (iii) \\ \implies \angle PLM &= \angle PML \end{align*}

(v) \( \triangle PLM \) is isosceles.

Answer In a triangle, if two angles are equal, then the sides opposite to these angles are also equal.

\begin{align*} & In \ \triangle \ PLM \\ & \angle PLM = \angle PML \implies \text{from (iv)} \\ \end{align*}

In a triangle, if two angles are equal, then the sides opposite to these angles are also equal.

\begin{align*} & PL = PM \\ & \triangle PLM \color{red} \text{ is isosceles} \end{align*}

6. In an isosceles triangle, the base angle is twice as large as vertex angle. Find the angles of the triangle.

Solution

\begin{align*} \text{Let the vertex angle be } & = x \\ \text{Let base angles be } & = 2x \\ \text{(Angle sum } & \text{property)} \\ \color{magenta} \angle A + \angle B + \angle C & = \color{magenta} 180^\circ \\ 2x + 2x + x &= 180^\circ \\ 5x &= 180^\circ \\ x &= 36^\circ \\ \color{green} \text{Vertex angle} & = \color{green} 36^\circ \\ \text{Base angles} & = 2x\\ & = 2 \times 36^\circ\\ \color{green} \text{Base angles} & = \color{green} 72^\circ\\ \end{align*}

Answer Angles of the triangle are \( \color{red} 36^\circ , 72^\circ, 72^\circ \).

7. A pole broke at a point but did not separate. Its top touched the ground at a distance of 5m from its base. If the point where it broke is at a height of 12 m from the ground, what was the total height of the pole before it broke?

Solution

\begin{align*} AC & = x \\ AB & = 5 \ m \\ BC & = 12 \ m \\ &\text{Pythagoras theorem} \\ \color{magenta} (AC)^2 &= \color{magenta} (AB)^2 + (BC)^2 \\ x^2 &= (5)^2 + (12)^2 \\ x^2 &= 25 + 144 \\ x^2 &= 169 \\ x &= 13 \ m \\ \\ &\text{Total height of the pole} \\ & = BC + CA \\ & = 12 \ m + 13 \ m \\ & = 25 \ m \\ \end{align*}

Answer Total height of the pole \( \color{red} 25 \ m \)

8. ∆ ABC is right angled at C. Can you locate its orthocentre without drawing any altitude? If so, name it.

Answer Yes, it is the vertex C.

9. Draw an equilateral triangle each of whose sides is 6 cm. Draw its medians. Are they equal?

Answer All the three medians are equal 5.2cm

10. The exterior angle at C of a \(\triangle ABC\) is equal to \(120^\circ\). Find the measure of all the angles of the triangle if \(\angle A = \angle B\). What type of triangle is this?

Solution

\begin{align*} \text{Given :} \\ \angle ACD &= 120^\circ \\ \angle A &= \angle B \\ \\ \text{To find} & = \angle A \ , \angle B \ , \angle ACB \\ \\ \color{magenta} \angle ACB + \angle ACD & = \color{magenta} 180^\circ \text{ (Linear pair)} \\ \angle ACB + 120^\circ & = 180^\circ \\ \angle ACB & = 180^\circ - 120^\circ \\ \color{green} \angle ACB & = \color{green} 60^\circ \\ \\ \color{magenta}\angle A + \angle B &= \color{magenta} \angle ACD \text{ (Exterior angle property)} \\ \angle A + \angle A &= 120^\circ \\ 2 \ \angle A &= 120^\circ \\ \angle A &= \frac{120^\circ}{2} \\ \\ \angle A &= 60^\circ \\ \therefore \angle B &= 60^\circ \\ \angle ACB & = 60^\circ \\ \triangle ABC & \text{ is an equilateral triangle} \end{align*}

Answer The angles of the triangle are \(\color{red}{60^\circ,\, 60^\circ,\, 60^\circ.}\) It is an \(\color{red}{\text{equilateral triangle.}}\)

11. In the given figure, find the measure of \(\angle 1 , \angle 2, \angle 3\)

Solution

\begin{align*} \angle 3 + 136^\circ & = 180^\circ \color{magenta} \text{ (Linear pair)} \\ \angle 3 & = 180^\circ - 136^\circ \\ \color{green}\angle 3 & = \color{green}44^\circ \\ \\ \angle 2 + 104^\circ & = 180^\circ \color{magenta} \text{ (Linear pair)} \\ \angle 2 & = 180^\circ - 104^\circ \\ \color{green}\angle 2 & = \color{green}76^\circ \\ \\ \angle 1 + \angle 2 + \angle 3 & = 180^\circ \color{magenta} \text{ (Angle sum property)} \\ \angle 1 + 76^\circ + 44^\circ & = 180^\circ \\ \angle 1 + 120^\circ & = 180^\circ \\ \angle 1 & = 180^\circ - 120^\circ \\ \color{green} \angle 1 & = \color{green} 60^\circ \end{align*}

Answer \( \angle 1 = {\color{red} 60^\circ} , \angle 2 = {\color{red} 76^\circ} ,\angle 3 = {\color{red} 44^\circ} \)

12. In the given figure, find the measure of \(\angle CAB , \angle ABC, \angle ACB \)

Solution

\begin{align*} \angle CAB & = \angle EAF \color{magenta} \text{ (Vertically opposite angles)} \\ \color{green}\angle CAB & = \color{green} 45^\circ \\ \\ \angle ABC + \angle CAB & = \angle ACD \color{magenta} \text{ (Exterior angle property)} \\ \angle ABC + 45^\circ & = 105^\circ \\ \angle ABC & = 105^\circ - 45^\circ \\ \color{green} \angle ABC & = \color{green} 60^\circ \\ \\ \angle ACB + \angle ACD & = 180^\circ \color{magenta} \text{ (Linear pair)} \\ \angle ACB + 105^\circ & = 180^\circ \\ \angle ACB & = 180^\circ - 105^\circ \\ \color{green}\angle ACB & = \color{green} 75^\circ \end{align*}

Answer \( \angle CAB = {\color{red} 45^\circ} , \angle ABC = {\color{red} 60^\circ} ,\angle ACB = {\color{red} 75^\circ} \)

13. Find x and y in the following figure.

Solution

\begin{align*} \angle x &= \angle A + \angle B \color{magenta} \text{ (Exterior angle property)} \\ x &= 30^\circ + 30^\circ \\ \color{green} x &= \color{green} 60^\circ \\ \\ \angle y &= \angle D + \angle DCE \\ y &= 30^\circ + 60^\circ \\ \color{green} y &= \color{green} 90^\circ \\ \end{align*}

Answer \( x = {\color{red} 60^\circ} , y = {\color{red} 90^\circ} \)

14. The lengths of two sides of a triangle are 12 cm and 15 cm. Between what two measures should the length of the third side fall?

Solution

The sum of any two sides of a triangle is always greater than the third side.

Length of the third side is greater than 15 - 12 = 3 cm.

Length of the third side is less than 15 + 12 = 27 cm.

Answer \( 3 cm < {\color{red} \text{Length of the third side}} < 27cm \)

The post DAV Class 7 Maths Chapter 8 Brain Teasers appeared first on Maths Guide.

]]>
580
Class 7 Maths Guide https://maths.guide/class-7-maths-guide/ Wed, 19 Feb 2025 00:17:47 +0000 https://maths.guide/?p=560 The post Class 7 Maths Guide appeared first on Maths Guide.

]]>
DAV Class 7 MATHS Guide <img src="https://s.w.org/images/core/emoji/15.0.3/72x72/1f4da.png" alt="📚" class="wp-smiley" style="height: 1em; max-height: 1em;" />

DAV Class 7 MATHS Guide 📚

The post Class 7 Maths Guide appeared first on Maths Guide.

]]>
560
DAV Class 7 Maths Chapter 9 Worksheet 2 https://maths.guide/dav-class-7-maths-chapter-9-worksheet-2/ Tue, 18 Feb 2025 23:49:03 +0000 https://maths.guide/?p=544 DAV Class 7 Maths Chapter 9 Worksheet 2 Congruent Triangles Worksheet 2

The post DAV Class 7 Maths Chapter 9 Worksheet 2 appeared first on Maths Guide.

]]>
DAV Class 7 Maths Chapter 9 Worksheet 2

Congruent Triangles Worksheet 2


1. In △ABC and △DEF, AB = DE and BC = EF as shown in the diagram. What additional information is required to make the two triangles congruent by SAS congruence condition?

Answer

In △ABC and △DEF.
\(\color{red} \angle B = \angle E \), is required to make the two triangles congruent by SAS congruence condition.

2. △ABC is isosceles with AB = AC as shown in the diagram. Line segment AD bisects \( \angle A \) and meets the base BC at D. Find the third pair of corresponding parts which make \( \triangle ADB \cong \triangle ADC \) by SAS congruence condition. Is it true to say that BD = CD? Why?

Answer

\[ \begin{align*} \text{In } \triangle ADB & \text{ and } \triangle ADC \\ \text{AB} &= \text{AC} \text{ (Given)} \color{red} (S)\\ \angle BAD &= \angle CAD \text{ ( AD bisects } \angle A \,) \color{red} (A)\\ \text{AD} &= \text{AD} \text{ (Common side)} \color{red} (S) \\ \\ \text{By SAS} & \text{ congruence condition,} \\ & \triangle ADB \cong \triangle ADC \\ \\ \text{Third pair } & \implies AD =AD \\ \text{Yes, } &BD = CD \text{ (by CPCT)} \end{align*} \]

3. In the below diagram AB \( \parallel \) DC and AB = DC.

(i) Is \( \angle \text{BAC} = \angle \text{DCA} \) ? Why ?

Answer \( \angle \text{BAC} = \angle \text{DCA}\) (Alternate angles)

(ii) Is \( \triangle \text{ABC} \cong \triangle \text{CDA} \) by SAS congruence condition?

Answer Yes, \( \triangle \text{ABC} \cong \triangle \text{CDA} \) by SAS congruence condition.

(iii) State the three facts you have used to answer (ii).

Answer

\[ \begin{align*} \text{In } \triangle ABC & \text{ and } \triangle CDA \\ \text{AB} &= \text{CD} \text{ (Given) } \color{red} (S) \\ \angle \text{BAC} &= \angle \text{DCA} \text{ (Alternate angles) } \color{red} (A) \\ \text{AC} &= \text{CA} \text{ (Common side) } \color{red} (S) \\ \\ \text{By SAS} & \text{ congruence condition,} \\ & \triangle ABC \cong \triangle CDA \end{align*} \]

4. In the below diagrams, which pairs of triangles are congruent by SAS congruence condition? If congruent, write the congruence of the two triangles in symbolic form

(i)

Solution

\[ \begin{align*} \text{In } \triangle ABC & \text{ and } \triangle EDF \\ \text{AB} &= \text{ED} \implies (3 \,cm) \color{red} (S) \\ \angle \text{B} &= \angle \text{D} \implies (70^\circ ) \color{red} (A) \\ \text{BC} &= \text{DF} \implies (4 \,cm) \color{red} (S) \\ \\ \text{By SAS} & \text{ congruence condition,} \\ & \triangle ABC \cong \triangle EDF \end{align*} \]

Answer Yes, \( \color{red} \triangle \text{ABC} \cong \triangle \text{EDF} \)

(ii)

Solution

\[ \begin{align*} \text{In } \triangle PQR & \text{ and } \triangle ZXY \\ \text{PQ} &= \text{ZX} \implies (3 \,cm) \color{red} (S) \\ \angle \text{Q} &= \angle \text{X} \implies (90^\circ ) \color{red} (A) \\ \text{QR} &= \text{XY} \implies (2 \,cm) \color{red} (S) \\ \\ \text{By SAS} & \text{ congruence condition,} \\ & \triangle PQR \cong \triangle ZXY \end{align*} \]

Answer Yes, \( \color{red} \triangle PQR \cong \triangle ZXY \)

(iii)

Solution

\[ \begin{align*} \text{In } \triangle AOB & \text{ and } \triangle COD \\ \text{AO} &= \text{CO} \implies (Given) \color{red} (S) \\ \angle \text{AOB} &= \angle \text{COD} \implies \text{(Vertically opposite angles )} \color{red} (A) \\ \text{BO} &= \text{DO} \implies (Given) \color{red} (S) \\ \\ \text{By SAS} & \text{ congruence condition,} \\ & \triangle AOB \cong \triangle COD \end{align*} \]

Answer Yes, \( \color{red} \triangle \text{AOB} \cong \triangle \text{COD} \)

(iv)

Solution

\[ \begin{align*} \text{In } \triangle PQS & \text{ and } \triangle RSQ \\ \text{PS} &= \text{RQ} \implies (4 \, cm) \color{red} (S) \\ \angle \text{PSQ} &= \angle \text{RQS} \implies \text{(Alternate angles )} \color{red} (A) \\ \text{QS} &= \text{SQ} \implies (5.8 \, cm) \color{red} (S) \\ \\ \text{By SAS} & \text{ congruence condition,} \\ & \triangle PQS \cong \triangle RSQ \end{align*} \]

Answer Yes, \( \color{red} \triangle \text{PSQ} \cong \triangle \text{RQS} \)

(v)

Solution

\[ \begin{align*} \text{In } \triangle PRQ & \text{ and } \triangle XYZ \\ \text{PR} &= \text{XY} \implies (4 \,cm) \color{red} (S) \\ \angle \text{PRQ} &= \angle \text{XYZ} \implies (55^\circ ) \color{red} (A) \\ \text{RQ} &= \text{YZ} \implies (2 \,cm) \color{red} (S) \\ \\ \text{By SAS} & \text{ congruence condition,} \\ & \triangle PQR \cong \triangle XZY \end{align*} \]

Answer Yes, \( \color{red} \triangle PRQ \cong \triangle XYZ \)

(vi)

Solution

\[ \begin{align*} \text{In } \triangle ABD & \text{ and } \triangle BAC \\ \text{AD} &= \text{BC} \implies (Given) \color{red} (S) \\ \text{BD} &= \text{AC} \implies \text{(Given )} \color{red} (S) \\ \text{AB} &= \text{BA} \implies \text{(Common Side)} \color{red} (S) \\ \\ \text{By SSS} & \text{ congruence condition,} \\ & \triangle ABD \cong \triangle BAC \\ \\ \text{In } \triangle ABD & \text{ and } \triangle BAC \\ \text{AD} &= \text{BC} \implies (Given) \color{red} (S) \\ \angle \text{D} &= \angle \text{C} \implies \text{(By CPCT)} \color{red} (A) \\ \text{BD} &= \text{AC} \implies (Given) \color{red} (S) \\ \\ \text{By SAS} & \text{ congruence condition,} \\ & \triangle ABD \cong \triangle BAC \\ \\ \end{align*} \]

Answer Yes, \( \color{red} \triangle ABD \cong \triangle BAC \)

5. In the given diagram, AB = AD and \( \angle BAC = \angle DAC \).

(i) State in symbolic form, the congruence of two triangles ABC and ADC is true. Also state the congruence condition used.

Answer

\[ \begin{align*} \text{In } \triangle ABC & \text{ and } \triangle ADC \\ \text{AB} &= \text{AD} \implies (Given) \color{red} (S) \\ \angle BAC &= \angle DAC \implies (Given) \color{red} (A) \\ \text{AC} &= \text{AC} \implies \text{(Common side)} \color{red} (S) \\ \\ \text{By SAS} & \text{ congruence condition,} \\ & \triangle ABD \cong \triangle BAC \end{align*} \]

(ii) Complete each of the following, so as to make it true:

(a) \( \angle ABC = \) \( \color{red} \angle ADC \)

(b) \( \angle ACD = \) \( \color{red} \angle ACB \)

(c) Line segment AC bisects \( \color{red} \angle BAD \) and \( \color{red} \angle BCD \)

The post DAV Class 7 Maths Chapter 9 Worksheet 2 appeared first on Maths Guide.

]]>
544
DAV Class 7 Maths Chapter 9 Worksheet 1 https://maths.guide/dav-class-7-maths-chapter-9-worksheet-1/ Tue, 18 Feb 2025 23:45:31 +0000 https://maths.guide/?p=542 DAV Class 7 Maths Chapter 9 Worksheet 1 Congruent Triangles Worksheet 1

The post DAV Class 7 Maths Chapter 9 Worksheet 1 appeared first on Maths Guide.

]]>
DAV Class 7 Maths Chapter 9 Worksheet 1

Congruent Triangles Worksheet 1


1. Fill in the blanks so as to make a true statement.

(i) Two line segments are congruent, if they have the same length

(ii) Two angles are congruent, if they have the same measure

(iii) Two squares are congruent, if they have the same side length

(iv) Two circles are congruent, if they have the same radius

(v) Two rectangles are congruent, if they have the same length and same breadth

2. In the diagrams below, state which pairs of triangles are congruent by SSS congruence condition. If congruent, write the congruence of triangles in symbolic form.

(i)

Solution

\[ \begin{align*} \text{In } \triangle ABC & \text{ and } \triangle PQR \\ \text{AB} &= \text{QR} \implies 2 \, cm \\ \text{BC} &= \text{RP} \implies 3 \, cm \\ \text{AC} &= \text{QP} \implies 2.5 \, cm \\ \\ \text{By SSS} & \text{ congruence condition,} \\ & \triangle ABC \cong \triangle QRP \end{align*} \]

Answer \( \color{red} \triangle ABC \cong \triangle QRP \)

(ii)

Solution

\[ \begin{align*} \text{In } \triangle PQS & \text{ and } \triangle PRS \\ \text{PQ} &= \text{PR} \implies 3.5 \, cm \\ \text{QS} &= \text{RS} \implies 2 \, cm \\ \text{SP} &= \text{SP} \implies 2.5 \, cm \\ \\ \text{By SSS} & \text{ congruence condition,} \\ & \triangle PQS \cong \triangle PRS \end{align*} \]

Answer \( \color{red} \triangle PQS \cong \triangle PRS \)

(iii)

Solution

\[ \begin{align*} \text{In } \triangle ABD & \text{ and } \triangle FEC \\ \text{AB} &= \text{FE} \implies 3 \, cm \\ \text{BD} &= \text{EC} \implies 3 \, cm \\ \text{DA} &= \text{CF} \implies 5.5 \, cm \\ \\ \text{By SSS} & \text{ congruence condition,} \\ & \triangle ABD \cong \triangle FEC \end{align*} \]

Answer \( \color{red} \triangle ABD \cong \triangle FEC \)

(iv)

Solution

\[ \begin{align*} \text{In } \triangle POQ & \text{ and } \triangle ROS \\ \text{PO} &= \text{RO} \implies 3 \, cm \\ \text{OQ} &= \text{OS} \implies 4 \, cm \\ \text{Third side} & \text{ not given.} \end{align*} \]

Answer Triangles are \( \color{red} \text{Not congruent} \) by SSS condition.

3. In the diagram below, PS = RS and PQ = RQ

(i) Is \( \triangle PQS \cong \triangle RQS \) ?

Answer \( \color{red} Yes \) , by SSS congruence condition.

(ii) State the three pairs of matching parts you have used to answer (i).

Answer

\[ \begin{align*} \text{In } \triangle PQS & \text{ and } \triangle RQS \\ \text{PS} &= \text{RS} \text{ (Given)} \\ \text{PQ} &= \text{RQ} \text{ (Given)} \\ \text{SQ} &= \text{SQ} \text{ (Common side)} \\ \\ \text{By SSS} & \text{ congruence condition,} \\ & \triangle PQS \cong \triangle RQS \end{align*} \]

(iii) \( \angle P = \) \( \color{red} \angle R \)

4. In the diagram below, △ABC is isosceles with AB = AC. D is the mid-point of base BC.

(i) Is \( \triangle ADB \cong \triangle ADC \) ? If yes, by which congruence condition?

Answer \( \color{red} Yes \), by SSS congruence condition.

(ii) State the three pairs of matching parts that you use to arrive at your answer.

Answer

\[ \begin{align*} \text{In } \triangle ADB & \text{ and } \triangle ADC \\ \text{AB} &= \text{AC} \text{ (Given)} \\ \text{BD} &= \text{CD} \text{ ( D is the mid point of BC)} \\ \text{AD} &= \text{AD} \text{ (Common side)} \\ \\ \text{By SSS} & \text{ congruence condition,} \\ & \triangle ADB \cong \triangle ADC \end{align*} \]

5. In △PQR and △XYZ, PQ = XZ and OR = YZ as shown in the diagram. What additional information is required to make the two triangles congruent by SSS congruence condition?

Answer

In △PQR and △XYZ.
\(\color{red} PR = XY \), is required to make the two triangles congruent by SSS congruence condition.

6. If \( \triangle ABC \cong \triangle DEF \), fill in the blanks to make each statement true.

(i) AB = DE

(ii) \( \angle C = \) \( \angle F \)

(iii) EF = BC

(iv) \( \angle D = \) \( \angle A \)

(v) CA = FD

(vi) \( \angle B = \) \( \angle E \)

The post DAV Class 7 Maths Chapter 9 Worksheet 1 appeared first on Maths Guide.

]]>
542
DAV Class 7 Maths Chapter 10 Value Based Questions https://maths.guide/dav-class-7-maths-chapter-10-value-based-questions/ Tue, 18 Feb 2025 23:18:51 +0000 https://maths.guide/?p=539 DAV Class 7 Maths Chapter 10 Value Based Questions Construction of Triangles Value Based Questions

The post DAV Class 7 Maths Chapter 10 Value Based Questions appeared first on Maths Guide.

]]>
DAV Class 7 Maths Chapter 10 Value Based Questions

Construction of Triangles Value Based Questions


1. Construct a triangular poster of measurement 3 cm, 5 cm, 6 cm. Write the slogan “SAVE ELECTRICITY” on the poster.

Answer

(i) What should be done to save electricity?

Answer To save electricity, switch off all the electronic gadgets when not in use or any other.

The post DAV Class 7 Maths Chapter 10 Value Based Questions appeared first on Maths Guide.

]]>
539
DAV Class 7 Maths Chapter 10 Brain Teasers https://maths.guide/dav-class-7-maths-chapter-10-brain-teasers/ Tue, 18 Feb 2025 23:11:40 +0000 https://maths.guide/?p=537 DAV Class 7 Maths Chapter 10 Brain Teasers Construction of Triangles Brain Teasers

The post DAV Class 7 Maths Chapter 10 Brain Teasers appeared first on Maths Guide.

]]>
DAV Class 7 Maths Chapter 10 Brain Teasers

Construction of Triangles Brain Teasers


1. A. Tick the correct option.

\( (a) \) A closed figure in a plane having three sides and three angles is known as—

\( (i) \) Square

\( (ii) \) Rectangle

\( (iii) \) Triangle

\( (iv) \) Pentagon

Answer \( (iii) \ \color{red} Triangle \)

\( (b) \) What are the possible dimensions for constructing a triangle of perimeter of 5 m?

\( (i) \) 1m, 1 m, 3 m

\( (ii) \) 1 m, 2 m, 2 m

\( (iii) \) 5 m, 1.5 m, 3 m

\( (iv) \) 1 m, 1.5 m, 2.5 m

Answer \( (ii) \ \color{red} 1 m, 2 m, 2 m \)

The sum of any two sides of a triangle is greater than the third side. \[ \begin{align*} 1 + 2 = 3 > 2 \\ 2 + 2 = 4 > 2 \\ 1 + 2 = 3 > 2 \\ \end{align*} \]

B. Answer the following questions.

(a) How many independent components are required to construct a triangle?

\[ \begin{align*} SSS , SAS , ASA , RHS \end{align*} \]

Answer \( \color{red} Three \)

(b) Mr. Ajay wants to construct a triangular kitchen garden whose perimeter is 42 m. Is it possible to construct a triangle with dimensions 20 m, 12 m, 10 m? Why or why not?

Answer

\[ \begin{align*} 20 + 12 = 32 > 10 \\ 12 + 10 = 22 > 20 \\ 20 + 10 = 30 > 12 \\ \end{align*} \]

Yes it is possible to construct a triangle with dimensions \( 20 m, 12 m, 10 m \), because the sum of any two sides of a triangle is always greater than the third side.

(c) Rohan was asked to construct a triangle with dimensions 20 cm, 13 cm, 7 cm .But he was unable to construct. Give reasons.

Answer

\[ \begin{align*} 20 + 13 = 33 > 7 \\ 20 + 7 = 27 > 13 \\ 13 + 7 = 20 \cancel> 20 \\ \end{align*} \]

Triangle is not possible because the sum of two sides is not greater than the third side \( \color{red} 13 + 7 = 20 \cancel> 20 \).

(d) How wil you proceed to construct a triangle whose two angles and one side (not the included one) is given?

Answer We can find the third angle using the angle sum property and construct a triangle.

(e) How many equilateral triangles are needed to make a regular hexagon?

Answer \( \color{red} 6 \)

2. Construct a triangle ABC in which \( \angle A = 65^\circ , \angle B = 75^\circ \text{ and } BC = 4cm \).

Answer

\[ \begin{align*} In \ \triangle ABC \\ \angle A + \angle B + \angle C & = 180^\circ \\ 65^\circ + 75^\circ + \angle C & = 180^\circ \\ 140^\circ + \angle C & = 180^\circ \\ \angle C & = 180^\circ - 140^\circ \\ \angle C & = 40^\circ \end{align*} \]

3. Construct a triangle ABC with \( \angle C = 90^\circ , \angle A = 45^\circ , BC = 5 cm \).

Answer

\[ \begin{align*} In \ \triangle ABC \\ \angle A + \angle B + \angle C & = 180^\circ \\ 90^\circ + \angle B + 45^\circ & = 180^\circ \\ \angle B + 135^\circ & = 180^\circ \\ \angle B & = 180^\circ - 135^\circ \\ \angle B & = 45^\circ \end{align*} \]

4. Construct a triangle ABC in which AB = 4 cm, AC = 5.2 cm, and \( \angle A = 135^\circ \). Also bisect \( \angle A \text{ and } \angle B \)

Answer

5. Construct a triangle ABC in which AB = 6 cm, BC = 4.5 cm, and AC = 5.9 cm. Also construct perpendicular bisectors of sides AC and AB.

Answer

XY is perpendicular to side AB.

PQ is perpendicular to side AC.

6. Draw a triangle ABC, with AB = 2 cm, BC = 4 cm and CA = 3 cm. Draw a line through A, perpendicular to line BC.

Answer

7. Construct a right angled triangle in which sides containing the right angle are 3 cm and 4 cm. Measure the hypotenuse.

Answer

Hypotenuse = 5cm

8. Construct a right triangle ABC such that BC = 4cm and the hypotenuse makes an angle of \( 30^\circ \) at B. Verify that AB = 2AC.

Answer

\[ \begin{align*} AB &= 4.6cm \\ AC &= 2.3cm \\ 2AC &= 4.6cm \\ \therefore AB &= 2AC \end{align*} \]

The post DAV Class 7 Maths Chapter 10 Brain Teasers appeared first on Maths Guide.

]]>
537
DAV Class 7 Maths Chapter 10 Worksheet 2 https://maths.guide/dav-class-7-maths-chapter-10-worksheet-2/ Tue, 18 Feb 2025 23:00:39 +0000 https://maths.guide/?p=535 DAV Class 7 Maths Chapter 10 Worksheet 2 Construction of Triangles Worksheet 2

The post DAV Class 7 Maths Chapter 10 Worksheet 2 appeared first on Maths Guide.

]]>
DAV Class 7 Maths Chapter 10 Worksheet 2

Construction of Triangles Worksheet 2


1. Construct a triangle AOB given that OA = 5 cm, OB = 4.5 cm, and \( \angle AOB = 50^\circ \).

Answer

2. Construct a triangle ABC given that \( \angle A = 120^\circ \), AB = AC = 3 cm. Draw the bisector of angle A.

Answer

3. Construct a triangle ABC in which \( \angle B = 90^\circ \) and AB = 4 cm and BC = 3 cm.

Answer

4. Construct a triangle PQR with \( QR = 4 \ cm, PQ = 3 \ cm \text{ and } \angle Q = 45^\circ \).

Answer

5. Construct a triangle PQR in which PR = 5.6 cm, QR = 3 cm and \( \angle R = 50^\circ \).

Answer

The post DAV Class 7 Maths Chapter 10 Worksheet 2 appeared first on Maths Guide.

]]>
535
DAV Class 7 Maths Chapter 10 Worksheet 1 https://maths.guide/dav-class-7-maths-chapter-10-worksheet-1/ Tue, 18 Feb 2025 22:56:59 +0000 https://maths.guide/?p=533 DAV Class 7 Maths Chapter 10 Worksheet 1 Construction of Triangles Worksheet 1

The post DAV Class 7 Maths Chapter 10 Worksheet 1 appeared first on Maths Guide.

]]>
DAV Class 7 Maths Chapter 10 Worksheet 1

Construction of Triangles Worksheet 1


1. Construct a triangle LMN in which LM = 5 cm, MN = 5.6 cm and NL = 4.2 cm.

Answer

2. Draw a triangle DEF such that DE = DF = 4 cm and EF = 6 cm. Measure \( \angle E \) and \( \angle F \) .

Answer

\( \angle E = {\color{red} 40^\circ} , \angle F = {\color{red} 40^\circ} \)

3. Draw an equilateral triangle one of whose sides is of length 5 cm.

Answer

\( \angle E = {\color{red} 40^\circ} , \angle F = {\color{red} 40^\circ} \)

4. Draw a triangle PQR in which PQ = 3 cm, QR = 4 cm, and RP = 5 cm. Also, draw the perpendicular to side PQ.

Answer

XY is perpendicular to side PQ.

5. Is it possible to construct a triangle whose sides are 3 cm, 6.1 cm, and 2.6 cm?

Answer

The sum of the lengths of any two sides of a triangle is greater than the length of third side.

\begin{align*} \text{Sum of two sides} && \quad \text{Third Side} \\ \end{align*} \begin{align*} 3 + 6.1 &= 9.1 & > && 2.6 \\ 2.6 + 6.1 &= 8.7 & > && 3 \\ 3 + 2.6 &= 5.6 & \color{red}{<} && 6.1 \\ \end{align*}

Triangle is not possible.

6. Draw a triangle PQR in which PQ = 7 cm, QR = 3 cm, RP = 4 cm. Is the construction of possible?

Answer

No, the construction is not possible.

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

\begin{align*} \text{Sum of two sides} && \quad \text{Third Side} \\ \end{align*} \begin{align*} 7 + 3 &= 10 & > && 4 \\ 7 + 4 &= 11 & > && 3 \\ 3 + 4 &= 7 & \color{red}{=} && 7 \\ \end{align*}

The post DAV Class 7 Maths Chapter 10 Worksheet 1 appeared first on Maths Guide.

]]>
533
DAV Class 7 Maths Chapter 12 HOTS https://maths.guide/dav-class-7-maths-chapter-12-hots/ Tue, 18 Feb 2025 11:18:36 +0000 https://maths.guide/?p=531 DAV Class 7 Maths Chapter 12 HOTS Data Handling HOTS

The post DAV Class 7 Maths Chapter 12 HOTS appeared first on Maths Guide.

]]>
DAV Class 7 Maths Chapter 12 HOTS

Data Handling HOTS


1. The average age of a class of 35 students is 14 years. If the teacher's age is included, the average age increases by one year. Find the age of the teacher.

\[ \begin{align*} \text{Average age of 35 students} & = 14 \,years \\ \text{Sum of ages of 35 students} & = 14 \times 35 \\ & = 490 \\ \\ \text{Average age of 35 students and 1 teacher} & = 15 \,years \\ \text{Sum of ages of 35 students and 1 teacher} & = 15 \times 36 \\ & = 540 \\ \\ \text{Age of the teacher} & = 540 - 490 \\ & = 50 \,years \end{align*} \]

Answer Age of the teacher \( \boxed{\color{red} 50\, years}\)

2. The average marks of ten students is 60. If the highest mark is excluded, the average is 59. Find the highest mark.

\[ \begin{align*} \text{Average marks of 10 students} & = 60 \\ \text{Sum of marks of 10 students} & = 60 \times 10 \\ & = 600 \\ \\ \text{Average marks of 9 students} & = 59 \\ \text{Sum of marks of 9 students} & = 59 \times 9 \\ & = 531 \\ \\ \text{Highest mark} & = 600 - 531 \\ & = 69 \, Marks \end{align*} \]

Answer Highest mark \( \boxed{\color{red} 69 \, Marks}\)

3. The mean of two numbers is 10 and their difference is zero. Find the numbers.

\[ \begin{align*} \text{Let the 2 numbers be } & x \text{ and } y \\ \\ \text{Mean of 2 numbers} & = 10 \\ \frac{x + y}{2} & = 10 \\ \\ x + y & = 2\times 10 \\ x + y & = 20 \\ \\ \text{Difference between 2 numbers} &=0 \\ \\ x - y &=0 \\ x &=0 + y \\ x &= y \\ x + y & = 20 \\ x + x & = 20 \\ 2x & = 20 \\ \\ x & = \frac{20}{2} \\ \\ x & = 10 \\ y & = 10 \\ \end{align*} \]

Answer The numbers are \( \boxed{\color{red} 10 , 10}\)

The post DAV Class 7 Maths Chapter 12 HOTS appeared first on Maths Guide.

]]>
531
DAV Class 7 Maths Chapter 12 Enrichment Question https://maths.guide/dav-class-7-maths-chapter-12-enrichment-question/ Tue, 18 Feb 2025 11:16:04 +0000 https://maths.guide/?p=529 DAV Class 7 Maths Chapter 12 Enrichment Question Data Handling Enrichment Question

The post DAV Class 7 Maths Chapter 12 Enrichment Question appeared first on Maths Guide.

]]>
DAV Class 7 Maths Chapter 12 Enrichment Question

Data Handling Enrichment Question


1. Find the mean, median and mode of the following observations.

\( \displaystyle 75\%, 3.2 , 450\%, 0.25, 3\frac{1}{5},1.54 \)

Solution

\begin{align*} & 75\%, 3.2 , 450\%, 0.25, 3\frac{1}{5},1.54 \\ \\ 75\% &= \frac{75}{100} \implies 0.75 \\ \\ 450\% &= \frac{450}{100} \implies 4.5 \\\\ 3\frac{1}{5} &= \frac{16}{5} \implies 3.2 \\ \\ \color{orange}Observations & = 0.75, 3.2 , 4.5, 0.25, 3.2,1.54 \\ \\ & \color{magenta} \boxed{Mean} \\ \text{Mean} &= \frac{\text{Sum of all observations}}{\text{No. of observations}} \\ \\ &= \frac{0.25 + 0.75 + 1.54 + 3.2 + 3.2 + 4.5}{6} \\ &= \frac{13.44}{6} \\ \\ \color{green} Mean &=\color{green} 2.24 \\ \\ & \color{magenta} \boxed{Median} \\ \text{Ascending order} & = \cancel{0.25}, \cancel{ 0.75}, 1.54, 3.2, \cancel{3.2}, \cancel{4.5} \\ \\ \text{Median} &= \frac{\text{Sum of two middle most observations}}{2} \\ \\ &= \frac{1.54 + 3.2}{2} \\ \\ &= \frac{4.74}{2} \\ \\ \color{green} Median &= \color{green} 2.37 \\ \\ & \color{magenta} \boxed{Mode} \\ \text{Mode} &= \text{The most frequently occurring value} \\ \text{Ascending order} & = 0.25, 0.75, 1.54, {\color{magenta}3.2, 3.2}, 4.5 \\ &= 3.2 \quad \text{(appears 2 times)} \\ \color{green} Mode &= \color{green} 3.2 \\ \\ \end{align*}

Answer Mean \( = \color{red} 2.24 \) , Median \( = \color{red} 2.37 \), Mode \( = \color{red} 3.2 \)

The post DAV Class 7 Maths Chapter 12 Enrichment Question appeared first on Maths Guide.

]]>
529