DAV Class 8 Maths Chapter 14 Worksheet 1

DAV Class 8 Maths Chapter 14 Worksheet 1

Mensuration Worksheet 1


1. Find the area of a trapezium whose parallel sides are 57 cm and 33 cm and the distance between them is 13 cm.

Solution

\[ \begin{align*} a &= 57 \, \text{cm} \\ b &= 33 \, \text{cm} \\ h &= 13 \, \text{cm} \\ \\ \color{green} \text{Area of the trapezium} &= \color{green} \frac{1}{2} \times (a + b) \times h \\ \\ &= \frac{1}{2} \times (57 + 33) \times 13 \\ \\ &= \frac{1}{{\cancel{2}}_{\color{green}1}} \times {{\cancel{90}}^{\color{green}45}} \times 13 \\ \\ &= 45 \times 13 \\ \\ \text{Area} &= 585 \, \text{cm}^2 \\ \end{align*} \]

Answer Area of a trapezium \( = \color{red} 585 \, \text{cm}^2 \)

2. The area of a trapezium is 850 sq. cm. One of the parallel sides is 64 cm, and the perpendicular distance between the parallel sides is 17 cm. Find the length of the other parallel side.

Solution

\[ \begin{align*} \text{Let other } &\text{parallel side be } b \, cm \\ \text{Area} &= 850 \, \text{cm}^2 \\ a &= 64 \, \text{cm} \\ b &= ? \\ h &= 17 \, \text{cm} \\ \\ \color{green} \text{Area of the trapezium} &= 850 \\ \color{green} \frac{1}{2} \times (a + b) \times h &= 850 \\ \\ \frac{1}{2} \times (64 + b) \times 17 &= 850 \\ \\ 64 + b &= \frac{{\cancel{850}}^{\color{green}50} \times 2}{{\cancel{17}}_{\color{green}1}} \\ \\ 64 + b &= 50 \times 2 \\ 64 + b &= 100 \\ b &= 100 - 64 \\ b &= 36 \, \text{cm} \end{align*} \]

Answer The length of the other parallel side \( = \color{red} 36 \, \text{cm} \).

3. The area of a trapezium is 1586 \( cm^2 \) and the sum of the parallel sides is 122 cm. Find the distance between the two parallel sides.

Solution

\[ \begin{align*} \text{Let the distance} &\text{ between the two parallel sides be } h \, cm \\ \text{Area} &= 1,586 \, \text{cm}^2 \\ \text{Sum of parallel sides} &= 122 \, \text{cm} \\ h &= ? \\ \\ \color{green} \text{Area of the trapezium} &= \color{green} \frac{1}{2} \times (\text{Sum of parallel sides}) \times h \\ \\ 1586 &= \frac{1}{{\cancel{2}}_{\color{green}1}} \times {{\cancel{122}}^{\color{green}61}} \times h \\ \\ 1586 &= 61 \times h \\ \\ \frac{{\cancel{1586}}^{\color{green}26}}{{\cancel{61}}_{\color{green}1}} & = h\\ \\ h &= 26 \, \text{cm} \end{align*} \]

Answer The distance between the parallel sides \( = \color{red} 26 \, \text{cm} \).

4. If the area of a trapezium is 28 \( m^2 \), and two parallel sides are 8 m and 60 dm respectively, find the altitude.

Solution

\[ \begin{align*} dm & \text{ to } m \\ 60 \, \text{dm} &= 6 \, \text{m} \\ \\ \text{Area} &= 28 \, \text{m}^2 \\ a &= 8 \, \text{m} \\ b &= 6 \, \text{m} \\ h &= ? \, \text{m} \\ \\ \color{green} \text{Area of the trapezium} &= \color{green} \frac{1}{2} \times (a + b) \times h \\ \\ 28 &= \frac{1}{2} \times (8 + 6) \times h \\ \\ 28 &= \frac{1}{{\cancel{2}}_{\color{green}1}} \times {\cancel{14}}^{\color{green}7} \times h \\ \\ 28 &= 7 \times h \\ \\ \frac{{\cancel{28}}^{\color{green}4}}{{\cancel{7}}_{\color{green}1}} & = h \\ \\ h &= 4 \, \text{m} \end{align*} \]

Answer The altitude \( = \color{red} 4 \, \text{m} \).

5. Find the height of a trapezium whose area is 1,080 \( cm^2 \) and lengths of its parallel sides are 55.6 cm and 34.4 cm.

Solution

\[ \begin{align*} a &= 55.6 \, \text{cm} \\ b &= 34.4 \, \text{cm} \\ h &= ? \, \text{cm} \\ \color{green} \text{Area of the trapezium} &= 1080 \, \text{cm}^2 \\ \color{green} \frac{1}{2} \times (a + b) \times h & = 1080 \\ \\ \frac{1}{2} \times (55.6 + 34.4) \times h & = 1080\\ \\ \frac{1}{{\cancel{2}}_{\color{green}1}} \times {\cancel{90}}^{\color{green}45} \times h & = 1080\\ \\ 45 \times h & = 1080\\ \\ h &= \frac{{\cancel{1080}}^{\color{green}24}}{{\cancel{45}}_{\color{green}1}} \\ \\ h &= 24 \, \text{cm} \end{align*} \]

Answer The height \( = \color{red} 24 \, \text{cm} \).

6. The area of a trapezium is 12 sq. m. If its height is 3 m, find the sum of its parallel sides.

Solution

\[ \begin{align*} \text{Area} &= 12 \, \text{m}^2 \\ h &= 3 \, \text{m} \\ a + b &= ? \\ \\ \color{green} \text{Area of the trapezium} &= 12 \, \text{m}^2 \\ \color{green} \frac{1}{2} \times (a + b) \times h &= 12 \\ \\ \frac{1}{2} \times (a + b) \times 3 & = 12 \\ \\ \frac{3}{2} \times (a + b) & = 12 \\ \\ a + b &= \frac{{\cancel{12}}^{\color{green}4} \times 2}{{\cancel{3}}_{\color{green}1}} \\ \\ a + b &= 8 \, \text{m} \end{align*} \]

Answer The sum of the parallel sides \( = \color{red} 8 \, \text{m} \).

7. The area of a trapezium is 248 sq. m, and its height is 8 m. If one of the parallel sides is smaller than the other by 4 m, find the two parallel sides.

Solution

\[ \begin{align*} h &= 8 \, \text{m} \\ \text{Let } a &= x \, (\text{larger side}) \\ \text{Let } b &= x - 4 \, (\text{smaller side}) \\ \\ \color{green} \text{Area of the trapezium} &= 248 \, \text{m}^2 \\ \\ \color{green} \frac{1}{2} \times (a + b) \times h &= 248 \\ \\ \frac{1}{{\cancel{2}}_{\color{green}1}} \times [x + (x - 4)] \times {\cancel{8}}^{\color{green}4} &= 248 \\ 4 \times (x + x - 4) &= 248 \\ 4 \times (2x - 4) &= 248 \\ (2x - 4) &= \frac{{\cancel{248}}^{\color{green}62}}{{\cancel{4}}_{\color{green}1}} \\ 2x - 4 &= 62 \\ 2x &= 62 + 4 \\ 2x &= 66 \\ x &= \frac{66}{2} \\ x &= 33 \, \text{m} \\ \\ \implies a &= 33 \, \text{m} \\ b &= 33 - 4 \\ \implies b &= 29 \, \text{m} \end{align*} \]

Answer The two parallel sides are \( \color{red} 33 \, \text{m} \) and \( \color{red} 29 \, \text{m} \).

8. Find the two parallel sides of a trapezium whose area is 1.6 \( m^2 \), altitude is 10 dm, and one of the parallel sides is longer than the other by 8 dm.

Solution

\[ \begin{align*} h &= 10 \, \text{dm} \\ b &= x \, (\text{shorter side}) \\ a &= x + 8 \, (\text{longer side}) \\ \\ 1 \, \text{m}^2 &= 100 \, \text{dm}^2 \\ 1.6 \, \text{m}^2 &= 160 \, \text{dm}^2 \\ \implies \text{Area} &= 160 \, \text{dm}^2 \\ \\ \color{green} \text{Area of the trapezium} &= 160 \, \text{dm}^2 \\ \color{green} \frac{1}{2} \times (a + b) \times h & = 160 \\ \\ \frac{1}{2} \times (x + 8 + x) \times 10 & = 160 \\ \\ \frac{1}{{\cancel{2}}_{\color{green}1}} \times (2x + 8) \times {\cancel{10}}^{\color{green}5} & = 160 \\ \\ (2x + 8) \times 5 & = 160 \\ \\ 2x + 8 & = \frac{\cancel{160}^{32}}{\cancel5_1} \\ \\ 2x + 8 & = 32 \\ 2x & = 32 - 8 \\ 2x & = 24 \\ x & = \frac{24}{2} \\ \\ x &= 12 \, \text{dm} \\ \\ \implies b &= 12 \, \text{dm} \\ a &= 12 + 8 \\ \implies a &= 20 \, \text{dm} \end{align*} \]

Answer The two parallel sides are \( \color{red} 20 \, \text{dm} \) and \( \color{red} 12 \, \text{dm} \).

9. The cross-section of a canal is in the form of a trapezium. If the top of the canal is 15 m wide, the bottom is 8 m, and the area of the cross-section is 138 m², find its depth.

Solution

\[ \begin{align*} a &= 15 \, \text{m} \\ b &= 8 \, \text{m} \\ h &= ? \\ \\ \color{green} \text{Area of the trapezium} &= 138 \, \text{m}^2 \\ \color{green} \frac{1}{2} \times (a + b) \times h & =138 \\ \\ \frac{1}{2} \times (15 + 8) \times h & = 138 \\ \\ \frac{1}{2} \times 23 \times h & = 138 \\ \\ h &= \frac{{\cancel{138}}^{\color{green}6} \times 2}{{\cancel{23}}_{\color{green}1}} \\ \\ h &= 12 \, \text{m} \end{align*} \]

Answer The depth of the canal \( = \color{red} 12 \, \text{m} \).

10. Two parallel sides of a trapezium are 58 cm and 42 cm. The other two sides are of equal length which is 17 cm. Find the area of the trapezium.

Solution

\[ \begin{align*} \text{Draw } & DF \parallel CB \\ \implies DFBC & \text{ is a parallelogram} \\ \text{In } &\triangle ADF \\ DA = DF & = 17 \, cm \\ AB &= 58 \, \text{cm} \\ AF &= 58 - 42 \implies 16 \, \text{cm} \\ DE \perp AF \implies & \text{E is the midpoint of AF} \\ \\ EF = \frac{AF}{2} \\ \\ = \frac{16}{2} \\ \implies EF = 8 \, cm \\ \\ \text{In } \triangle DEF & \text{ (right angled triangle)} \\ (DE)^2 + (EF)^2 &= (DF)^2 \\ (DE)^2 + 8^2 &= 17^2 \\ (DE)^2 + 64 &= 289 \\ (DE)^2 &= 289 - 64 \\ (DE)^2 &= 225 \\ DE &= \sqrt{225} \\ DE &= 15 \, cm \\ \\ \text{In trapezium } & DABC \\ a &= 58 \, \text{cm} \\ b &= 42 \, \text{cm} \\ h &= 15 \, \text{cm} \\ \\ \color{green} \text{Area of the trapezium} &= \color{green} \frac{1}{2} \times (a + b) \times h \\ \\ &= \frac{1}{2} \times (58 + 42) \times 15 \\ \\ &= \frac{1}{{\cancel{2}}_{\color{green}1}} \times {{\cancel{100}}^{\color{green}50}} \times 15 \\ \\ &= 50 \times 15 \\ \text{Area} &= 750 \, \text{cm}^2 \end{align*} \]

Answer Area of the trapezium \( = \color{red} 750 \, \text{cm}^2 \).

11. The lengths of the parallel sides of a trapezium are in the ratio 4:7. If the height of the trapezium is 14 m and its area is 385 sq. m, find the length of its parallel sides.

Solution

\[ \begin{align*} \text{Let shorter side be }(a) &= 4x \\ \text{Let longer side be } (b) &= 7x \\ h &= 14 \, \text{m} \\ \color{green} \text{Area of trapezium} &= 385 \, \text{m}^2 \\ \color{green} \frac{1}{2} \times (a + b) \times h &= 385 \\ \frac{1}{2} \times (4x + 7x) \times 14 &= 385\\ \\ \frac{1}{{\cancel{2}}_{\color{green}1}} \times 11x \times {\cancel{14}}^{\color{green}7} &= 385 \\ 77x &= 385 \\ \\ x &= \frac{{\cancel{385}}^{\color{green}5}}{{\cancel{77}}_{\color{green}1}} \\ \\ x &= 5 \\ \\ \text{Shorter side} &= 4x \\ & = 4 \times 5 \\ \text{Shorter side} &= 20 \, \text{m} \\ \\ \text{Longer side} &= 7x \\ & = 7 \times 5 \\ \text{Longer side} &= 35 \, \text{m} \end{align*} \]

Answer The lengths of the parallel sides are \( \color{red} 20 \, \text{m} \) and \( \color{red} 35 \, \text{m} \).

12. The perimeter of a trapezium is 104 m, its non-parallel sides are 18 m and 22 m, and its altitude is 16 m. Find the area of the trapezium.

Solution

\[ \begin{align*} h &= 16 \, m\\ \text{Perimeter} &= 104 \, \text{m} \\ 18 + a + 22 + b & = 104 \\ a + b + 40 & = 104 \\ a + b & = 104 - 40\\ a + b & = 64 \\ \\ \color{green} \text{Area of trapezium} &= \color{green} \frac{1}{2} \times (a + b) \times h \\ \\ & = \frac{1}{\cancel2_1} \times 64 \times \cancel{16}^8 \\ \\ & = 64 \times 8 \\ & = 512 \, \text{m}^2 \end{align*} \]

Answer The area of the trapezium \( = \color{red} 512 \, \text{m}^2 \).

Leave a Comment