DAV Class 8 Maths Chapter 14 Mensuration Additional Practice Sums
Mensuration Additional Practice Sums
1. 15 cylindrical pillars of a building are to be painted and the diameter and height of each pillar is 48 cm and 7 m respectively. Find the cost of painting if the rate is ₹2 per sq.m. [use \(\pi = \frac{22}{7}\)]
Solution
\[ \begin{align*} \text{Number of pillars} &= 15 \\ \text{Diameter } (d) &= 48 \, \text{cm} = 0.48 \, \text{m} \\ \implies \text{Radius } (r) &= \frac{d}{2} = 0.24 \, \text{m} \\ \text{Height } (h) &= 7 \, \text{m} \\ \text{Rate} &= \text{₹}2 \, \text{per sq.m} \\ \\ \text{CSA of one pillar} &= 2\pi rh \\ &= 2 \times \frac{22}{7} \times 0.24 \times 7 \\ &= 44 \times 0.24 \\ &= 10.56 \, \text{m}^2 \\ \\ \text{CSA of 15 pillars} &= 15 \times 10.56 \\ &= 158.40 \, \text{m}^2 \\ \\ \text{Cost of painting} &= \text{Total Area} \times \text{Rate} \\ &= 158.40 \times 2 \\ &= \text{₹}316.80 \end{align*} \]
Answer The cost of painting is \(\color{red} \text{₹}316.80 \).
2. Shira wants to buy a trapezium shaped field. Its side along the river is parallel and twice the side along the road. If the area is 10,500 m² and perpendicular distance between the two parallel sides is 100 m, find the length of the side along the road.
Solution
\[ \begin{align*} \text{Let side along road } (a) &= x \, \text{m} \\ \implies \text{Side along river } (b) &= 2x \, \text{m} \\ \text{Distance } (h) &= 100 \, \text{m} \\ \text{Area} &= 10,500 \, \text{m}^2 \\ \\ \text{Area of trapezium} &= \frac{1}{2} \times (a + b) \times h \\ 10500 &= \frac{1}{2} \times (x + 2x) \times 100 \\ 10500 &= \frac{1}{\cancel{2}_1} \times 3x \times \cancel{100}^{50} \\ 10500 &= 150x \\ x &= \frac{10500}{150} \\ x &= 70 \, \text{m} \end{align*} \]
Answer Length of the side along the road is \(\color{red} 70 \, \text{m} \).
3. Ankur is painting the walls and ceiling of a cuboidal hall with length, breadth and height 12 m, 10 m, and 6 m respectively. From each can of paint 192 m² of area can be painted. How many cans of paint will he need to paint the room.
Solution
\[ \begin{align*} l &= 12 \, \text{m}, \, b = 10 \, \text{m}, \, h = 6 \, \text{m} \\ \text{Area of one can} &= 192 \, \text{m}^2 \\ \\ \text{Area to be painted} &= \text{Area of 4 walls} + \text{Area of ceiling} \\ &= 2h(l + b) + lb \\ &= 2 \times 6(12 + 10) + (12 \times 10) \\ &= 12 \times 22 + 120 \\ &= 264 + 120 \\ &= 384 \, \text{m}^2 \\ \\ \text{Number of cans} &= \frac{\text{Total area}}{\text{Area per can}} \\ &= \frac{384}{192} \\ &= 2 \end{align*} \]
Answer He will need \(\color{red} 2 \) cans of paint.
4. A road roller is 140 cm long and its diameter is 84 cm. It takes 1000 complete revolutions to move once over to level the road. Find the cost of levelling road at ₹50 per 100 sq.m.
Solution
\[ \begin{align*} \text{Height } (h) &= 140 \, \text{cm} = 1.4 \, \text{m} \\ \text{Diameter } (d) &= 84 \, \text{cm} \\ \text{Radius } (r) &= 42 \, \text{cm} = 0.42 \, \text{m} \\ \\ \text{Area leveled in 1 rev} &= \text{CSA of cylinder} \\ &= 2\pi rh \\ &= 2 \times \frac{22}{7} \times 0.42 \times 1.4 \\ &= 44 \times 0.06 \times 1.4 \\ &= 3.696 \, \text{m}^2 \\ \\ \text{Area leveled in 1000 revs} &= 1000 \times 3.696 \\ &= 3696 \, \text{m}^2 \\ \\ \text{Cost} &= \frac{3696 \times 50}{100} \\[6pt] &= 36.96 \times 50 \\ &= \text{₹}1848 \end{align*} \]
Answer Cost of levelling the road is \(\color{red} \text{₹}1848 \).
5. A cuboidal tin is 30 cm by 40 cm by 50 cm, opened from top. Find the cost of tin sheet required for making 20 such tins if the cost of tin sheet is ₹20 per sq.m.
Solution
\[ \begin{align*} l &= 30 \, \text{cm} = 0.3 \, \text{m} \\ b &= 40 \, \text{cm} = 0.4 \, \text{m} \\ h &= 50 \, \text{cm} = 0.5 \, \text{m} \\ \\ \text{Surface Area of 1 tin} &= \text{Area of 4 walls} + \text{Area of base} \\ &= 2h(l + b) + lb \\ &= 2 \times 0.5(0.3 + 0.4) + (0.3 \times 0.4) \\ &= 1.0 \times 0.7 + 0.12 \\ &= 0.82 \, \text{m}^2 \\ \\ \text{Area for 20 tins} &= 20 \times 0.82 \\ &= 16.4 \, \text{m}^2 \\ \\ \text{Cost} &= 16.4 \times 20 \\ &= \text{₹}328 \end{align*} \]
Answer The cost of tin sheet required is \(\color{red} \text{₹}328 \).
6. Volume of metallic cylindrical pipe is 748 cm³. Its height is 14 cm and external radius is 9 cm. Find the thickness.
Solution
\[ \begin{align*} \text{Volume } (V) &= 748 \, \text{cm}^3 \\ \text{Height } (h) &= 14 \, \text{cm} \\ \text{External Radius } (R) &= 9 \, \text{cm} \\ \text{Let Internal Radius} &= r \\ \\ \text{Volume of pipe} &= \pi(R^2 - r^2)h \\ 748 &= \frac{22}{7} \times (9^2 - r^2) \times 14 \\ 748 &= 22 \times (81 - r^2) \times 2 \\ 748 &= 44 \times (81 - r^2) \\ 81 - r^2 &= \frac{748}{44} \\ 81 - r^2 &= 17 \\ r^2 &= 81 - 17 = 64 \\ r &= 8 \, \text{cm} \\ \\ \text{Thickness} &= R - r \\ &= 9 - 8 \\ &= 1 \, \text{cm} \end{align*} \]
Answer Thickness of the pipe is \(\color{red} 1 \, \text{cm} \).
7. The thickness of hollow metallic cylinder is 2 cm. It is 70 cm long with outer radius 14 cm. Find the volume of metal used in making the cylinder, assuming that it is open at both the ends. Also, find its weight, if the metal weighs 8 gm per cm³.
Solution
\[ \begin{align*} \text{Height } (h) &= 70 \, \text{cm} \\ \text{Outer Radius } (R) &= 14 \, \text{cm} \\ \text{Thickness} &= 2 \, \text{cm} \\ \implies \text{Inner Radius } (r) &= R - \text{thickness} \\ &= 14 - 2 \\ &= 12 \, \text{cm} \\ \\ \text{Volume of metal} &= \pi(R^2 - r^2)h \\ &= \frac{22}{7} \times (14^2 - 12^2) \times 70 \\ &= 22 \times (196 - 144) \times 10 \\ &= 22 \times 52 \times 10 \\ &= 11,440 \, \text{cm}^3 \\ \\ \text{Weight} &= \text{Volume} \times \text{Density} \\ &= 11440 \times 8 \\ &= 91,520 \, \text{gm} \\ &= 91.52 \, \text{kg} \end{align*} \]
Answer Volume is \(\color{red} 11,440 \, \text{cm}^3 \) and weight is \(\color{red} 91.52 \, \text{kg} \).
8. The area of trapezium with equal non parallel side is 168 m². If the length of the parallel side are 36 m and 20 m, find the length of each non-parallel side.
Solution
\[ \begin{align*} \text{Area} &= 168 \, \text{m}^2 \\ a &= 36 \, \text{m} \\ b &= 20 \, \text{m} \\[6pt] \color{green} \text{Area of the trapezium} &= \frac{1}{2} \times (a + b) \times h \\ 168 &= \frac{1}{2} \times (36 + 20) \times h \\ 168 &= \frac{1}{\cancel{2}_1} \times \cancel{56}^{28} \times h \\ 168 &= 28h \\ h &= \frac{168}{28} \\[6pt] h &= 6 \, \text{m} \\ \\ \text{Draw } & DF \parallel CB \\ \implies DFBC & \text{ is a parallelogram} \\ \text{In } &\triangle ADF \\ DA = DF & = x \\ AB &= 36 \, \text{m} \\ AF &= 36 - 20 = 16 \, \text{m} \\ \\ \text{DE } \perp \text{ AF} \implies & \text{E is the midpoint of AF} \\ EF &= \frac{AF}{2} = \frac{16}{2} = 8 \, \text{m} \\ \\ \text{In } \triangle DEF & \text{ (right angled triangle)} \\ (DE)^2 + (EF)^2 &= (DF)^2 \\ 6^2 + 8^2 &= x^2 \\ 36 + 64 &= x^2 \\ x^2 &= 100 \\ x &= \sqrt{100} \\ x &= 10 \, \text{m} \end{align*} \]
Answer Length of each non-parallel side is \(\color{red} 10 \, \text{m} \).
9. A solid iron cuboidal block of size 4.4 m × 2.6 m × 1 m is cast into a hollow cylindrical pipe of internal radius 30 cm and 5 cm thickness. Determine the length of the pipe.
Solution
\[ \begin{align*} \text{Volume of cuboid} &= 4.4 \times 2.6 \times 1 \\ &= 11.44 \, \text{m}^3 \\ & \implies 11,440,000 \, \text{cm}^3 \\ \\ \text{Internal radius } (r) &= 30 \, \text{cm} \\ \text{Thickness} &= 5 \, \text{cm} \\ \implies \text{External radius } (R) &= 30 + 5 = 35 \, \text{cm} \\ \\ \text{Volume of hollow pipe} &= \pi \times h \times (R^2 - r^2) \\[6pt] 11440000 &= \frac{22}{7} \times (35^2 - 30^2) \times h \\[6pt] 11440000 &= \frac{22}{7} \times (1225 - 900) \times h \\[6pt] 11440000 &= \frac{22}{7} \times 325 \times h \\[6pt] h &= \frac{11440000 \times 7}{22 \times 325} \\[6pt] h &= \frac{520000 \times 7}{325} \\[6pt] h &= 1600 \times 7 \\ &= 11,200 \, \text{cm} \\[6pt] h &= 112 \, \text{m} \end{align*} \]
Answer Length of the pipe is \(\color{red} 112 \, \text{m} \).
10. Find the area of trapezium whose parallel sides are 20 cm and 10 cm respectively. The other two sides are of equal length which is 13 cm.
Solution
\[ \begin{align*} \text{Draw } & DF \parallel CB \\ \implies DFBC & \text{ is a parallelogram} \\ \text{In } &\triangle ADF \\ DA = DF & = 13 \, \text{cm} \\ AB &= 20 \, \text{cm} \\ AF &= 20 - 10 \implies 10 \, \text{cm} \\ \\ DE \perp AF \implies & \text{E is the midpoint of AF} \\ \\ EF = \frac{AF}{2} &= \frac{10}{2} = 5 \, \text{cm} \\ \\ \text{In } \triangle DEF & \text{ (right angled triangle)} \\ (DE)^2 + (EF)^2 &= (DF)^2 \\ (DE)^2 + 5^2 &= 13^2 \\ (DE)^2 + 25 &= 169 \\ (DE)^2 &= 169 - 25 \\ (DE)^2 &= 144 \\ DE &= \sqrt{144} \\ DE &= 12 \, \text{cm} \\ \\ \text{In trapezium } & ABCD \\ a &= 20 \, \text{cm} \\ b &= 10 \, \text{cm} \\ h &= 12 \, \text{cm} \\ \\ \color{green} \text{Area of the trapezium} &= \frac{1}{2} \times (a + b) \times h \\ &= \frac{1}{2} \times (20 + 10) \times 12 \\ &= \frac{1}{\cancel{2}_1} \times 30 \times \cancel{12}^6 \\ &= 180 \, \text{cm}^2 \end{align*} \]
Answer Area of the trapezium is \(\color{red} 180 \, \text{cm}^2 \).
11. The perimeter of the base of cuboid is 14 cm and its LSA is 231 cm². Find its height.
Solution
\[ \begin{align*} \text{Perimeter of base } &= 14 \, \text{cm} \\ 2(l+b) &= 14 \, \text{cm} \\ \text{LSA} &= 231 \, \text{cm}^2 \\ \\ \text{LSA of cuboid} &= 2h(l + b) \\ 231&= h \times 2(l+b) \\ 231 &= h \times 14 \\[6pt] h &= \frac{231}{14} \\[6pt] h &= 16.5 \, \text{cm} \end{align*} \]
Answer Height of the cuboid is \(\color{red} 16.5 \, \text{cm} \).
12. Volume of cylinder is 150\(\pi\) cu.cm. Height is 6 cm. Find TSA, CSA of cylinder.
Solution
\[ \begin{align*} \text{Volume } (V) &= 150\pi \, \text{cm}^3 \\ \text{Height } (h) &= 6 \, \text{cm} \\ \\ \text{Volume} &= \pi r^2 h \\ 150\pi &= \pi r^2 \times 6 \\ r^2 &= \frac{150}{6} \\ r^2 &= 25 \\ r &= 5 \, \text{cm} \\ \\ \text{CSA} &= 2\pi rh \\ &= 2 \times \pi \times 5 \times 6 \\ &= 60\pi \, \text{cm}^2 \\ \\ \text{TSA} &= 2\pi r(r + h) \\ &= 2 \times \pi \times 5 \times (5 + 6) \\ &= 10\pi \times 11 \\ &= 110\pi \, \text{cm}^2 \end{align*} \]
Answer CSA is \(\color{red} 60\pi \, \text{cm}^2 \) and TSA is \(\color{red} 110\pi \, \text{cm}^2 \).