DAV Class 7 Maths Chapter 7 Worksheet 2

DAV Class 7 Maths Chapter 7 Worksheet 2

Linear Equations in One Variable Worksheet 2


Solve the following equations and check your answers.

1. Adding 4 to twice a number yields \( \displaystyle \frac{25}{6} \) Find the number.

Solution:

\begin{align*} \text{Let the } & \text{number be } x \\ \text{Twice the } & \text{number is } 2x \\ \text{Adding 4 to twice } & \text{the number is } 2x + 4 \\ \\ \color{magenta} 2x + 4 &= \color{magenta} \frac{25}{6} \\ \\ 2x &= \frac{25}{6} - 4 \\ \\ 2x &= \frac{25}{6} - \frac{4 {\color{green}\times 6}}{1 {\color{green}\times 6}} \\ \\ 2x &= \frac{25 - 24}{6} \\ \\ 2x &= \frac{1}{6} \\ \\ x &= \frac{1}{6 \times 2} \\ \\ \color{red} x & \, \color{red} = \frac{1}{12} \\ \\&\color{Orange} \text{Check} \\ \color{magenta} \text{LHS}&= 2x + 4 \\ \\ &= \cancel2^1 \left(\frac{1}{\cancel{12}_6}\right) + 4 \\ \\ &= \frac{1}{6} + \frac{4 {\color{green}\times 6}}{1 {\color{green}\times 6}} \\ \\ &= \frac{1 + 24}{6} \\ \\ &= \frac{25}{6} \\ \\ \color{magenta} \text{RHS}&= \frac{25}{6} \\ \end{align*}

Answer The number is \(\color{red} \boxed{\frac{1}{12}}\)

2. A number when added to its two-thirds is equal to \( 55\). Find the number.

Solution:

\begin{align*} \text{Let the } & \text{number be } x \\ \text{Two-thirds the } & \text{number is } \frac{2x}{3} \\ \\ \color{magenta}x + \frac{2x}{3} &= \color{magenta} 55 \\ \\ \frac{x {\color{green}\times 3}}{1 {\color{green}\times 3}} + \frac{2x}{3} &= 55 \\ \\ \frac{3x + 2x}{3} &= 55 \\ \frac{5x}{3} &= 55 \\ x &= \cancel{55}^{11} \times \frac{3}{\cancel5_1} \\ x &= 11 \times 3 \\ \color{red} x & \, \color{red} = 33 \\ \\ &\color{Orange} \text{Check} \\ \color{magenta} \text{LHS} &= x + \frac{2}{3}x \\ &= 33 + \frac{2}{\cancel3} \times \cancel{33}^{11} \\ &= 33 + 22 \\ &= 55 \\ \\ \color{magenta} \text{RHS} &= 55 \\ \end{align*}

Answer The number is \(\color{red} \boxed{33}\)

3. A number when multiplied by 4 exceeds itself by \(45\). Find the number.

Solution:

\begin{align*} \text{Let the } & \text{number be } x \\ \\ \color{magenta} 4x &= \color{magenta} x + 45 \\ 4x - x &= 45 \\ 3x &= 45 \\ x &= \frac{\cancel{45}^{15}}{\cancel3_1} \\ \color{red} x & \, \color{red} = 15 \\ \\ &\color{Orange} \text{Check} \\ \color{magenta} \text{LHS} & =4x \\ &= 4(15) \\ &= 60 \\ \color{magenta} \text{RHS} & =x +45 \\ & =15 +45 \\ & =60 \\ \end{align*}

Answer The number is \(\color{red} \boxed{15}\)

4. Find a number which when multiplied by 8 and then reduced by 9 is equal to \(47\).

Solution:

\begin{align*} \text{Let the } & \text{number be } x \\ \color{magenta} 8x - 9 &= \color{magenta}47 \\ 8x &= 47 + 9 \\ 8x &= 56 \\ x &= \frac{56}{8} \\ \color{red} x & \, \color{red} = 7 \\ \\ &\color{Orange} \text{Check} \\ \color{magenta} \text{LHS} &= 8x - 9 \\ &= 8(7) - 9 \\ &= 56 - 9 \\ &= 47 \\ \\ \color{magenta} \text{RHS}&= 47 \\ \end{align*}

Answer The number is \(\color{red} \boxed{7}\)

5. The sum of two numbers is \(72\). If one of the number is 6 more than the other, find the number.

Solution:

\begin{align*} \text{Let the } & \text{number be } x \\ \text{Let the other } & \text{number be } x+6 \\ \\ \color{magenta} x + x + 6 &= \color{magenta} 72 \\ 2x + 6 &= 72 \\ 2x &= 72 - 6 \\ 2x &= 66 \\ x &= \frac{\cancel{66}^{33}}{\cancel2_1} \\ \color{red} x & \, \color{red} = 33 \\ \\ \text{Other number} &= x + 6 \\ &= 33 + 6 \\ \text{Other number} &= \color{red} 39 \\ \\ \color{Orange} \text{Check} \\ \text{Sum of the numbers} & = 33 + 39 \\ &= 72 \end{align*}

Answer The number are \(\color{red} \boxed{33}\) and \(\color{red} \boxed{39}\)

6. The sum of two number is \(99\). If one exceeds the other by 9, find the numbers.

Solution:

\begin{align*} \text{Let the number } & \text{be } x \\ \text{Let the other number } & \text{be } x + 9 \\ \\ \color{magenta} x + x + 9 &= \color{magenta} 99 \\ 2x + 9 &= 99 \\ 2x &= 99 - 9 \\ 2x &= 90 \\ x &= \frac{\cancel{90}^{45}}{\cancel2_1} \\ \color{red} x & \, \color{red} = 45 \\ \\ \text{Other number} &= x + 9 \\ &= 45 + 9 \\ & = \color{red} 54 \\ \\ \color{Orange} \text{Check} \\ \text{Sum of the numbers} &= 45 + 54 \\ &= 99 \\ \end{align*}

Answer The number are \(\color{red} \boxed{45}\) and \(\color{red} \boxed{54}\)

7. One number is 10 more than the other. If their sum is \(52\), find the numbers.

Solution:

\begin{align*} \text{Let the number } & \text{be } x \\ \text{Let the other number } & \text{be } x + 10 \\ \\ \color{magenta} x + x + 10 &= \color{magenta} 52 \\ 2x + 10 &= 52 \\ 2x &= 52 - 10 \\ 2x &= 42 \\ x &= \frac{\cancel{42}^{21}}{\cancel2_1} \\ \color{red} x & \, \color{red} = 21 \\ \\ \text{Second number } &= x + 10 \\ &= 21 + 10 \\ &= \color{red} 31 \\ \color{Orange} \text{Check} \\ \text{Sum of the numbers} &= 21 + 31 \\ &= 52 \end{align*}

Answer The number are \(\color{red} \boxed{21}\) and \(\color{red} \boxed{31}\)

8. The length of a rectangle is 20 cm more than its breadth. If the perimeter is \(100\) cm, find the dimension of the rectangle.

Solution:

\begin{align*} \text{Let Breadth } &= x \\ \text{Length } &= x + 20 \\ \text{Perimeter } &= 100cm \\ Perimeter & = 2 (L + B) \\ 2 (L + B) &= 100 \\ \\ \color{magenta} 2 (x + 20 + x) &= \color{magenta}100 \\ 2 (2x + 20) &= 100 \\ 2x + 20 &= \frac{100}{2} \\ 2x + 20 &= 50 \\ 2x &= 50 - 20 \\ 2x &= 30 \\ x &= \frac{\cancel{30}^{15}}{\cancel2_1} \\ \color{red} x & \, \color{red} = 15cm \\ \\ \color{green} Breadth & \, \color{green} = 15cm \\ \\ \text{Length } &= x + 20 \\ &= 15 + 20 \\ \color{green} Length & \, \color{green} = 35cm \\ \\ \color{Orange} \text{Check} \\ \text{Perimeter} &= 2 (L + B) \\ &= 2 (35 + 15) \\ &= 2 (50) \\ &= 100cm \\ \end{align*}

Answer The dimension of the rectangle are \(\color{red} {\boxed{L = 35 \,cm}} \) and \(\color{red} {\boxed{B = 15 \, cm}} \)

9. The length of a rectangle is three times its width. It the perimeter is \(84\) m, find the length of the rectangle.

Solution:

\begin{align*} \text{Let Breadth } &= x \\ \text{Length } &= 3x \\ \text{Perimeter } &= 84cm \\ Perimeter & = 2 (L + B) \\ 2 (L + B) &= 84 \\ \\ \color{magenta} 2 (x + 3x) &= \color{magenta} 84 \\ 2 (4x) &= 84 \\ 4x &= \frac{\cancel{84}^{42}}{\cancel2_1} \\ \\ 4x &= 42 \\ \\ x &= \frac{\cancel{42}^{21}}{\cancel4_2} \\ \\ x &= \frac{21}{2} \\ \\ \color{red} x & \, \color{red} = 10.5cm \\ \\ \color{green} Breadth & \, \color{green} = 10.5cm \\ \\ \text{Length } &= 3x \\ &= 3 \times 10.5 \\ \color{green} Length & \, \color{green} = 31.5cm \\ \\ \color{Orange} \text{Check} \\ \text{Perimeter} &= 2 (L + B) \\ &= 2 (31.5 + 10.5) \\ &= 2 (42) \\ &= 84 cm \\ \end{align*}

Answer The dimension of the rectangle are \(\color{red} {\boxed{L = 31.5 \,cm}} \) and \(\color{red} {\boxed{B = 10.5 \, cm}} \)

10. Two equal sides of an isoscles triangle are each 2 cm more than thrice the third side. If the perimeter of triangle is \(67\) cm, find the lengths of its sides.

Solution:

\begin{align*} \text{Let the third side be} &= x \\ \text{Other two sides} &= 3x + 2 \\ \text{Perimeter } &= 67 cm\\ \text{Perimeter of } \triangle &= \text{Sum of all sides } \\ \\ \color{magenta} x + (3x + 2) + (3x + 2) &= \color{magenta} 67 \\ x + 3x + 2 + 3x + 2 &= 67 \\ 7x + 4 &= 67 \\ 7x &= 67 - 4 \\ 7x &= 63 \\ x &= \frac{\cancel{63}^9}{\cancel7_1} \\ \color{red} x & \, \color{red} = 9cm \\ \\ \color{green} \text{Third side} & \, \color{green} = 9cm \\ \\\text{Other two sides} &= 3x + 2 \\ &= 3(9) + 2 \\ &= 27 + 2 \\ \color{green} \text{Other two sides} & \, \color{green} = 29cm \\ \\ &\color{Orange} \text{Check} \\ \text{Perimeter} &= 9 + 29 + 29 \\ &= 9 + 58 \\ &= 67 \text{ cm} \\ \end{align*}

Answer The length of the sides are \(\color{red} {\boxed{9 \,cm, 29 \,cm, 29 \,cm}} \)

11. Length of a rectangle is 16 cm less than twice its breadth. If the perimeter of the rectangle is \(100\) cm, find its length and breadth.

Solution:

\begin{align*} \text{Let breadth } & = x \\ \text{Length } &= 2x - 16 \\ \text{Perimeter } &= 100 \\ Perimeter &= 2 (\text{L} + \text{B}) \\ 2 (\text{L} + \text{B}) &= 100 \\ \\ \color{magenta} 2 (2x - 16 + x) &= \color{magenta} 100 \\ 2 (3x - 16) &= 100 \\ 3x - 16 &= \frac{\cancel{100}^{50}}{\cancel2_1} \\ \\ 3x - 16 &= 50 \\ 3x &= 50 + 16 \\ 3x &= 66 \\ x &= \frac{\cancel{66}^{22}}{\cancel3_1} \\ \\ \color{red} x & \, \color{red} = 22cm \\ \\ \color{green} Breadth & \, \color{green} = 22cm \\ \\ \text{Length } &= 2x - 16 \\ &= 2(22) - 16 \\ &= 44 - 16 \\ \color{green} Length & \, \color{green} = 28cm \\ \\ &\color{Orange} \text{Check} \\ \text{Perimeter} &= 2(l + b) \\ &= 2(28 + 22) \\ &= 2(50) \\ &= 100 \text{ cm} \\ \end{align*}

Answer The dimension of the rectangle are \(\color{red} {\boxed{L = 28 \,cm}} \) and \(\color{red} {\boxed{B = 22 \, cm}} \)

12. Find two consecutive positive integers whose sum is \(63\).

Solution:

\begin{align*} \text{Let the first integer} &= x \\ \text{Other integer} &= x + 1 \\ \\ \color{magenta} x + x + 1 &= \color{magenta} 63 \\ 2x + 1 &= 63 \\ 2x &= 63 - 1 \\ 2x &= 62 \\ x &= \frac{\cancel{62}^{31}}{\cancel2_1} \\ \color{red} x & \, \color{red} = 31 \\ \\ \color{green} \text{First integer} & \, \color{green} = 31 \\ \\ \text{Second integer} &= x + 1 \\ &= 31 + 1 \\ \color{green} \text{Second integer} & \, \color{green} = 32 \\ \\ \end{align*} \begin{align*} \color{Orange} \text{Check} \\ \text{Sum of two consecutive integers} &= 31 + 32 \\ & = 63 \\ \end{align*}

Answer The two consecutive positive integers are \(\color{red} {\boxed{31}} \) and \(\color{red} {\boxed{32}} \)

13. A sum of ₹ \(800\) is in the form of denominations of ₹ 10 and ₹ 20. If the total number of notes is 50, find the number of notes of each type.

Solution:

\begin{align*} \text{No. of ₹ 10 notes} &= x \\ \text{No. of ₹ 20 notes} &= 50 - x \\ \\ \text{Value of ₹ 10 notes} &= 10 x \\ \text{Value of ₹ 20 notes} &= 20 (50 - x) \\ \\ \text{According to } &\text{the question} \\ \color{magenta}10x + 20(50 - x ) &= \color{magenta}800 \\ 10x + 1000 - 20x &= 800 \\ 1000 - 10x &= 800 \\ - 10x &= 800 - 1000 \\ \cancel- 10x &= \cancel- 200 \\ 10x &= 200 \\ x &= \frac{\cancel{200}^{20}}{\cancel{10}_1} \\ \color{red} x & \, \color{red} = 20 \\ \\\color{green} \text{₹10} & \, \color{green} = 20 \, notes \\ \\ \text{₹20 notes } &= 50 - x \\ &= 50 - 20 \\ \color{green} \text{₹20} & \, \color{green} = 30 \, notes \\ \\\color{Orange} \text{Check} \\ \color{magenta} \text{LHS} &= 10x + 20(50 - x ) \\ &= 10 (20) + 20 (50-20) \\ &= 200 + 20 (30) \\ &= 200 + 600 \\ & = \text{₹} 800 \\\\ \color{magenta} \text{RHS} & = \text{₹} 800 \end{align*}

Answer There are \(\color{red} {\boxed{20}} \) ₹10 notes and \(\color{red} {\boxed{30}} \) ₹20 notes.

14. In a class of 49 students, number of girls is \( \displaystyle \frac{2}{5}\) of the boys. Find the number of boys in the class.

Solution:

\begin{align*} \text{Let the number of boys} &= x \\ \text{Let the number of girls} &= \frac{2}{5}x \\ \\ \text{Total students} &= 49 \\ \text{Boys + Girls} &= 49 \\ \\ \color{magenta} x + \frac{2}{5}x &= \color{magenta} 49 \\ \\ \frac{x {\color{green}\times 5}}{1 {\color{green}\times 5}} + \frac{2}{5}x &= 49 \\ \\ \frac{5x + 2x}{5} &= 49 \\ \frac{7x}{5} &= 49 \\ x &= \cancel{49}^7 \times \frac{5}{\cancel7} \\ x &= 7 \times 5 \\ x &= 35 \\ \color{green} Boys & \, \color{green} = 35 \\ \\ \text{Girls} &= \frac{2}{5}x \\ &= \frac{2}{\cancel5} \times \cancel{35}^7 \\ &= 2 \times 7 \\ \color{green} Girls & \, \color{green} = 14 \\ \\ \color{Orange} \text{Check} \\ \text{Total students } &= 35 + 14 \\ &= 49 \\ \end{align*}

Answer There are \(\color{red} {\boxed{35}} \) boys in the class.

15. Leena has \( 117\) rupees in the form of 5 rupee coins and 2 rupee coins. The number of 2 rupee coins is 4 times that of 5 rupee coins. Find the number of coins of each denomination.

Solution:

\begin{align*} \text{Let no. of ₹5 coins} &= x \\ \text{No. of ₹2 coins} &= 4x \\ \\ \text{Value of ₹5 coins} &= 5x \\ \text{Value of ₹2 coins} &= 2 \times 4x \\ &\implies 8x \\ \text{Total Money} &= 117 \\ \\ \color{magenta} 5x + 8x &= \color{magenta}117 \\ 13x &= 117 \\ x &= \frac{\cancel{117}^{9}}{\cancel{13}_1} \\ x &= 9 \\ \color{green} \text{No. of ₹5 coins} & = \color{green} 9 \\ \\ \text{No. of ₹2 coins} &= 4x \\ &= 4 \times 9 \\ \color{green} \text{No. of ₹2 coins} & = \color{green} 36 \\ \\ \color{Orange} \text{Check} \\ \color{magenta} \text{LHS} &= 5x + 8x \\ &= 5(9) + 8(9) \\ &= 45 + 72 \\ &= 117 \\ \\ \color{magenta} \text{RHS}&= 117 \\ \end{align*}

Answer There are \(\color{red} {\boxed{9}} \) ₹5 coins and \(\color{red} {\boxed{36}} \) ₹2 coins.

16. A total of Rs \( 80,000\) is to be distributed among 200 persons as prizes. A prize is either of Rs 500 or Rs 100. Find the number of each prize.

Solution:

\begin{align*} \text{Let no. of ₹500 prizes} &= x \\ \text{No. of ₹100 prizes} &= 200 - x \\ \\ \text{Value of ₹500 prizes} &= 500x \\ \text{Value of ₹100 prizes} &= 100 (200 - x) \\ \text{Total Money} &= 80000 \\ \\ \color{magenta} 500x + 100(200 - x) &= \color{magenta}80000 \\ 500x + 20000 - 100x &= 80000 \\ 400x + 20000 &= 80000 \\ 400x &= 80000 - 20000 \\ 400x &= 60000 \\ x &= \frac{\cancel{60000}^{150}}{\cancel{400}_1} \\ x &= 150 \\ \color{green} \text{No. of ₹500 prizes} & = \color{green} 150 \\ \\ \text{No. of ₹100 prizes} &= 200 - x \\ &= 200 - 150 \\ &= 50 \\ \color{green} \text{No. of ₹100 prizes} & = \color{green} 50 \\ \\ \color{Orange} \text{Check} \\ \color{magenta} \text{LHS} &= 500x + 100(200 - x) \\ &= 500(150) + 100(200 - 150) \\ &= 75000 + 100(50) \\ &= 75000 + 5000 \\ &= \text{₹}80000 \\ \\ \color{magenta} \text{RHS}&= \text{₹}80000 \\ \end{align*}

Answer There are \(\color{red} {\boxed{150}} \) ₹500 prizes and \(\color{red} {\boxed{50}} \) ₹100 prizes.

17. When \( \displaystyle \frac{1}{3}\) is subtracted from a number and the difference is multiplied by 4, the result is 28. Find the number.

Solution:

\begin{align*} \text{Let the } & \text{number be } x \\ \frac{1}{3} \text{ subtracted from} & \text{ the number } = x - \frac{1}{3} \\ \text{Difference multiplied } & \text{by } 4 = 4 \left( x - \frac{1}{3} \right) \\ \\ \color{magenta}4 \left( x - \frac{1}{3} \right) &= \color{magenta} 28 \\ \\ x - \frac{1}{3} &= \frac{28}{4} \\ \\ x - \frac{1}{3} &= 7 \\ x &= 7 + \frac{1}{3} \\ \\ x &= \frac{7 {\color{green}\times 3}}{1 {\color{green}\times 3}} + \frac{1}{3} \\ \\ x &= \frac{21 + 1}{3} \\ \\ \color{green} x &= \color{green}\frac{22}{3} \\ \\ &\color{Orange} \text{Check} \\ \color{magenta} \text{LHS}&=4 \left( \frac{22}{3} - \frac{1}{3} \right) \\ \\ &=4 \left( \frac{22 - 1}{3} \right) \\ \\ &=4 \times \frac{\cancel{21}^7}{\cancel3_1} \\ &=4 \times 7 \\ &=28 \\ \\ \color{magenta} \text{RHS}&=28 \end{align*}

Answer The number is \(\color{red} {\boxed{\frac{22}{3}}} \)

18. Sudesh is twice as old as Seema. If six years is subtracted from Seema's age and four years are added to Sudesh's age, Sudesh wil be four times Seema's age. How old were they three years ago?

Solution:

\begin{align*} \text{Let Seema's age} & = x \\ \text{Sudesh's age} & = 2x \\ \\ \end{align*} \begin{align*} \text{6 years subtracted from Seema's age} & = x - 6 \\ \text{4 years added to Sudesh's age} & = 2x + 4 \\ \\ \end{align*}\begin{align*} \text{Sudesh will be four} & \text{ times Seema's age} \\ \color{magenta}2x + 4 &= \color{magenta}4(x - 6) \\ 2x + 4 &= 4x - 24 \\ 4 + 24 &= 4x - 2x \\ 28 &= 2x \\ x &= 14 \\ \color{green} \text{Seema's present age} &= \color{green} 14 \ years \\ \\ \text{Sudesh's age} &= 2x \\ &= 2 \times 14 \\ &= 28 \\ \color{green} \text{Sudesh's present age} &= \color{green} 28 \ years \\ \\ \text{Three years ago,} & \text{ their ages were} \\ \text{Seema's age} &= 14 - 3 \\ &= \color{brown}11 \text{ years} \\ \text{Sudesh's age} &= 28 - 3 \\ &= \color{brown}25 \text{ years} \\ \end{align*}

Answer Three years ago Seema was \(\color{red} {\boxed{11 \, years}} \) and Sudesh was \(\color{red} {\boxed{25 \, years}} \) old.

19. The ages of Leena and Heena are in the ratio \( 7 : 5\). Ten years hence, the ratio of their ages wil be \( 9 : 7\). Find their present ages.

Solution:

\begin{align*} \text{Let present age of Leena} & = 7x \\ \text{Present age of Heena} & = 5x \\ \\ \text{Ten years} & \text{ hence}\\ \text{Age of Leena} &= 7x + 10\\ \text{Age of Heena} &= 5x + 10\\ \\ \color{magenta} (7x + 10) : (5x 10) & = \color{magenta} 9:7 \\ \\ \frac{7x + 10}{5x + 10} &= \frac{9}{7} \\ \\ 7(7x + 10) &= 9(5x + 10) \\ 49x + 70 &= 45x + 90 \\ 49x - 45x &= 90 - 70 \\ 4x &= 20 \\ x &= \frac{\cancel{20}^5}{\cancel4_1} \\ x &= 5 \\ \\ \text{Present age of Leena} & = 7x \\ & = 7 \times 5 \\ & = 35 \\ \color{green} \text{Present age of Leena} &= \color{green} 35 \ years \\ \\ \text{Present age of Heena} & = 5x \\ & = 5 \times 5 \\ & = 25 \\ \color{green} \text{Present age of Heena} &= \color{green} 25 \ years \end{align*}

Answer Present ages of Leena is \(\color{red} {\boxed{35 \, years}} \) and Heena is \(\color{red} {\boxed{25 \, years}} \) old.

20. Vikas is three years older than Deepika. Six years ago, Vikas's age was four times Deepika's age. Find the ages of Deepika and Vikas.

Solution:

\begin{align*} \text{Let Deepika's present age} & = x \\ \text{Vikas's present age} & = x + 3 \\ \\ \text{Six years} & \text{ ago} & \\ \text{Deepika's age} &= x - 6 \\ \text{Vikas's age} &= x + 3 - 6 \\ &= x - 3 \\ \\ \text{Vikas's age was four} & \text{ times Deepika's age} \\ \color{magenta} x - 3 &= \color{magenta} 4(x - 6) \\ x - 3 &= 4x - 24 \\ 4x - x &= 24 - 3 \\ 3x &= 21 \\ x &= \frac{\cancel{21}^7}{\cancel3_1} \\x &= 7 \\ \color{green} \text{Present age of Deepika} &= \color{green} 7 \ years \\ \\ \text{Present age of Vikas} & = x + 3 \\ & = 7 + 3 \\ & = 10 \\ \color{green} \text{Present age of Vikas} &= \color{green} 10 \ years \\ \\ \end{align*}

Answer Present ages of Deepika is \(\color{red} {\boxed{7 \, years}} \) and Viaks is \(\color{red} {\boxed{10 \, years}} \) old.