DAV Class 7 Maths Chapter 7 Brain Teasers
Linear Equations in One Variable Brain Teasers
1. A. Tick (✔) the correct option.
(a) \( x + x + x + x = \) ___________ (i) \( x^4 \) (ii) \( 4x \) (iii) \( x \) (iv) \( 4x^4 \)
Solution
\[ \begin{align*} x + x + x + x &= 4x \end{align*} \]
Answer \( {\color{orange} (ii)} \ \color{red} 4x \)
(b) \( (9z + 7) - 5(2z - 3) + 3(2z + 3) = \) ___________ (i) \( 5z + 31 \) (ii) \( -5z + 31 \) (iii) \( 5z - 31 \) (iv) \( -5z - 31 \)
Solution
\[ \begin{align*} & = (9z + 7) - 5(2z - 3) + 3(2z + 3) \\ &= 9z + 7 - 10z + 15 + 6z + 9 \\ &= 9z - 10z + 6z + 7 + 15 + 9 \\ &= 5z + 31 \end{align*} \]
Answer \( {\color{orange} (i)} \ \color{red} 5z + 31 \)
(c) If \( 4x - 3 = 21 \), what is the value of \( (3x - 5) \)? (i) \( 16 \) (ii) \( 14 \) (iii) \( 13 \) (iv) \( 15 \)
Solution
\[ \begin{align*} 4x - 3 &= 21 \\ 4x &= 21 + 3 \\ 4x &= 24 \\ x &= \frac{\cancel{24}^6}{\cancel4_1} \\ \\ x &= 6 \\ \\ \text{Now } \implies & 3x - 5 \\ &= 3(6) - 5 \\ &= 18 - 5 \\ &= 13 \end{align*} \]
Answer \( {\color{orange} (iii)} \ \color{red} 13 \)
(d) Which of the following is a solution of the equation \( 3x - 7 = 7 - 4x \)? (i) \( x = 0 \) (ii) \( x = 14 \) (iii) \( x = 2 \) (iv) \( x = 1 \)
Solution
\[ \begin{align*} 3x - 7 &= 7 - 4x \\ 3x + 4x &= 7 + 7 \\ 7x &= 14 \\ x &= \frac{\cancel{14}^2}{\cancel 7_1} \\ x &= 2 \end{align*} \]
Answer \( {\color{orange} (iii)} \ \color{red} x = 2 \)
(e) \( x = 5 \) is a solution of the equation— (i) \( \displaystyle \frac{3}{5}x - 6 = 3 \) (ii) \( 2x + 2 = 4x \) (iii) \( 4x - 2 = 3x + 3 \) (iv) \( 3(x - 3) = 5(2x + 1) \)
Solution
\[ \begin{align*} 4x - 2 &= 3x + 3 \\ 4(5) - 2 &= 3(5) + 3 \\ 20 - 2 &= 15 + 3 \\ 18 &= 18 \end{align*} \]
Answer \( {\color{orange} (iii)} \ \color{red} 4x - 2 = 3x + 3 \)
B. Answer the following questions.
(a) A confectioner had some boxes for burger and he bought 50 more boxes. After two days, half of these boxes were used and only 40 boxes were left. Find the number of boxes he had in the beginning.
Solution
\[ \begin{aligned} \text{Let the no. of boxes be } & x \\ \text{Buying 50 more boxes} &= x + 50 \\ \text{Half of these were used} &= \frac{x + 50}{2} \\ \text{Remaining boxes} &= 40 \\ \\ \color{magenta} (x + 50) - \left( \frac{x + 50}{2} \right) &= \color{magenta}40 \\ \\ x + 50 - \left( \frac{x + 50}{2} \right) &= 40 \\ \\ \frac{x {\color{green} \times 2}}{1 {\color{green} \times 2}} + \frac{50 {\color{green} \times 2}}{1 {\color{green} \times 2}} - \left( \frac{x + 50}{2} \right) &= 40 \\ \\ \frac{2x + 100 - x - 50}{2} &= 40 \\ \\ \frac{x+50}{2} &= 40 \\ \\ x+50 &= 2 \times 40 \\ x+50 &= 80 \\ x &= 80 - 50 \\ x &= 30 \end{aligned} \]
Answer The confectioner had \( \color{red} 30 \ boxes \) in the beginning.
(b) Find \( K \), so that \( x = 3 \) is a solution of the equation \( Kx + 8 = x - 7 \).
Solution
\[ \begin{aligned} Kx + 8 &= x - 7 \\ K(3) + 8 &= 3 - 7 \\ 3K + 8 &= -4 \\ 3K &= -4 - 8 \\ 3K &= -12 \\ K &= \frac{-\cancel{12}^4}{\cancel3_1} \\ \\ K &= -4 \end{aligned} \]
Answer \( \color{red} K = -4 \)
(c) Seema had a wire of some length. After making a square of side 4 cm with it, 5 cm wire left. Find the length of wire Seema had.
Solution
\[ \begin{aligned} \text{Let the length } &\text{of wire be } x \\ \text{Side of the square} &= 4 \ cm \\ \text{Perimeter} &= 4 \times 4 \implies 16 \text{ cm} \\ \text{Remaining wire} &= 5 \ cm \\ \\ x & = \text{Perimeter} + \text{Remaining wire}\\ x &= 4 \times 4 + 5 \\ x &= 16 + 5 \\ x &= 21 \ cm \\ \end{aligned} \]
Answer Seema had \( \color{red} 21 \) cm of wire.
(d) If \( A = (2a - 3) \) and \( B = (5 - 3a) \) be two algebraic expressions such that \( 2A + B = 6 \), then find the value of \( a \).
Solution
\[ \begin{aligned} 2A + B &= 6 \\ 2(2a - 3) + (5 - 3a) &= 6 \\ 4a - 6 + 5 - 3a &= 6 \\ 4a - 3a -6 + 5 &= 6 \\ a - 1 &= 6 \\ a &= 6 + 1 \\ a &= 7 \end{aligned} \]
Answer \( \color{red} a = 7 \)
(e) Check whether \( y = 1 \) is a solution of the equation \( 1.2(3y - 4) - 0.3(2y - 6) = 0 \) or not.
Solution
\[ \begin{aligned} \color{magenta} LHS & = 1.2(3y - 4) - 0.3(2y - 6) \\ & = 1.2[3(1) - 4] - 0.3[2(1) - 6] \\ & = 1.2(3 - 4) - 0.3(2 - 6) \\ & = 1.2(-1) - 0.3(-4) \\ & = -1.2 + 1.2 \\ & = 0 \\ \\ \color{magenta} RHS & = 0 \\ \\ LHS & = RHS \end{aligned} \]
Answer \( \color{red} y = 1 \) is a solution of the equation.
2. Solve the following equations:
(i) \( \displaystyle \frac{x}{2} + \frac{x}{3} - \frac{x}{4} = 7 \)
Solution
\begin{align*} \frac{x}{2} + \frac{x}{3} - \frac{x}{4} &= 7 \\ \\ \frac{x {\color{green} \times 6}}{2 {\color{green} \times 6}} + \frac{x {\color{green} \times 4}}{3 {\color{green} \times 4}} - \frac{x {\color{green} \times 3}}{4 {\color{green} \times 3}} &= 7 \\ \\ \frac{6x + 4x - 3x}{12} &= 7 \\ \\ \frac{7x}{12} &= 7 \\ x &= \frac{\cancel 7^1 \times 12}{\cancel 7_1} \\ \color{red} x & \, \color{red} = 12 \end{align*}
(ii) \( \displaystyle \frac{2}{3}(y - 5) - \frac{1}{4}(y - 2) = \frac{9}{2} \)
Solution
\begin{align*} \frac{2}{3}(y - 5) - \frac{1}{4}(y - 2) &= \frac{9}{2} \\ \\ \frac{2y - 10}{3} - \frac{y - 2}{4} &= \frac{9}{2} \\ \\ \frac{(2y - 10) {\color{green} \times 6}}{3 {\color{green} \times 4}} - \frac{(y - 2) {\color{green} \times 3}}{4 {\color{green} \times 3}} &= \frac{9}{2} \\ \\ \\ \frac{8y - 40 - (3y - 6)}{12} &= \frac{9}{2} \\ \\ \frac{8y - 40 - 3y + 6}{12} &= \frac{9}{2} \\ \\ \frac{8y - 3y - 40 + 6}{12} &= \frac{9}{2} \\ \\ \frac{5y - 34}{12} &= \frac{9}{2} \\ \\ (5y - 34) \times 2 &= 9 \times 12 \\ 10y - 68 &= 108 \\ 10y &= 108 + 68 \\ 10y &= 176 \\ y &= \frac{\cancel{176}^{88}}{\cancel{10}_5} \\ \\ \color{red} y & \, \color{red} = \frac{88}{5} \end{align*}
(iii) \( 13(z - 4) - 3(z - 9) - 5(z + 4) = 0 \)
Solution
\begin{align*} 13(z - 4) - 3(z - 9) - 5(z + 4) &= 0 \\ 13z - 52 - 3z + 27 - 5z - 20 &= 0 \\ 13z - 3z - 5z - 52 + 27 - 20 &= 0 \\ 5z - 45 &= 0 \\ 5z &= 45 \\ z &= \frac{\cancel{45}^9}{\cancel 5_1} \\ \color{red} z & \, \color{red} = 9 \end{align*}
(iv) \( (x + 2)(x + 3) + (x - 3)(x - 2) - 2x(x + 1) = 0 \)
Solution
\begin{align*} (x + 2)(x + 3) + (x - 3)(x - 2) - 2x(x + 1) &= 0 \\ x(x + 3)+ 2(x + 3) + x(x - 2) -3(x - 2) - 2x(x + 1) &= 0 \\ x^2 + 3x + 2x + 6 + x^2 - 2x -3x + 6 - 2x^2 - 2x &= 0 \\ {\color{magenta} x^2 + x^2 - 2x^2} + {\color{green} 3x + 2x - 2x -3x - 2x} + {\color{blue}6 + 6} &= 0 \\ {\color{magenta} 2x^2 - 2x^2} + {\color{green} 5x - 7x} + {\color{blue}12} &= 0 \\ 0 - 2x + 12 &= 0 \\ -2x &= -12 \\ x &= \frac{\cancel{-12}^6}{\cancel{-2}_1} \\ \color{red} x & \, \color{red} = 6 \end{align*}
(v) \( \displaystyle \frac{2x + 14}{3x + 6} = 4 \)
Solution
\begin{align*} \frac{2x + 14}{3x + 6} &= 4 \\ \\ 2x + 14 &= 4(3x + 6) \\ 2x + 14 &= 12x + 24 \\ 2x - 12x &= 24 - 14 \\ -10x &= 10 \\ -x &= \frac{\cancel{10}^1}{\cancel{10}_1} \\ -x &= 1 \\ \color{red} x & \, \color{red} = -1 \end{align*}
(vi) \( \displaystyle a - \left( \frac{a - 1}{2} \right) = 1 - \left( \frac{a - 2}{3} \right) \)
Solution
\begin{align*} a - \frac{a - 1}{2} &= 1 - \frac{a - 2}{3} \\ \\ a - \frac{(a -1)}{2} + \frac{(a - 2)}{3} &= 1 \\ \\ \frac{a {\color{green} \times 6}}{1 {\color{green} \times 6}} - \frac{(a -1) {\color{green} \times 3}}{2 {\color{green} \times 3}} + \frac{(a - 2) {\color{green} \times 2}}{3 {\color{green} \times 2}} &= 1 \\ \\ \frac{6a - 3(a-1) +2(a-2) }{6} &= 1 \\ \\ 6a - 3a + 3 + 2a - 4 &= 6 \\ 6a - 3a + 2a + 3 - 4 &= 6 \\ 5a - 1 &= 6 \\ 5a &= 6 +1 \\ 5a &= 7 \\ \color{red} a & \, \color{red} = \frac{7}{5} \end{align*}
(vii) \( \displaystyle \frac{x + 2}{6} - \left[ \frac{11 - x}{3} - \frac{1}{4} \right] = \frac{3x - 14}{12} \)
Solution
\begin{align*} \frac{x + 2}{6} - \left[ \frac{11 - x}{3} - \frac{1}{4} \right] &= \frac{3x - 14}{12} \\ \\ \frac{x + 2}{6} - \frac{11 - x}{3} + \frac{1}{4} &= \frac{3x - 14}{12} \\ \\ \frac{(x + 2) {\color{green} \times 2}}{6 {\color{green} \times 2}} - \frac{(11 - x) {\color{green} \times 4}}{3 {\color{green} \times 4}} + \frac{1 {\color{green} \times 3}}{4 {\color{green} \times 3}} &= \frac{3x - 14}{12} \\ \\ \frac{2(x + 2) -4(11-x) +3}{12} &= \frac{3x - 14}{12} \\ \\ 2x + 4 -44+4x +3 &= \frac{3x - 14}{\cancel{12}} \times \cancel{12} \\ \\ 6x - 37 &= 3x - 14 \\ 6x - 3x &= -14 + 37 \\ 3x &= 23 \\ \color{red} x & \, \color{red} = \frac{23}{3} \end{align*}
(viii) \( \displaystyle \frac{2}{3x} - 1 = \frac{1}{12} \)
Solution
\begin{align*} \frac{2}{3x} - 1 &= \frac{1}{12} \\ \\ \frac{2}{3x} &= \frac{1}{12} + 1 \\ \\ \frac{2}{3x} &= \frac{1}{12} + \frac{1 {\color{green} \times 12}}{1 {\color{green} \times 12}} \\ \\ \frac{2}{3x} &= \frac{1 + 12}{12} \\ \\ \frac{2}{3x} &= \frac{13}{12} \\ \\ 2 \times 12 &= 13 \times 3x \\ 24 &= 39x \\ x &= \frac{\cancel{24}^8}{\cancel{39}^{13}} \\ \\ \color{red} x & \, \color{red} = \frac{8}{13} \end{align*}
3. The numerator of a fraction is 6 less than the denominator. If 3 is added to the numerator, the fraction becomes equal to \( \displaystyle \frac{2}{3} \). Find the original fraction.
Solution
\begin{align*} \text{Let the denominator be} &= x \\ \text{Numerator} &= x - 6 \\ \\ \color{magenta} \frac{x - 6 + 3}{x} &= \color{magenta} \frac{2}{3} \\ \\ \frac{x - 3}{x} &= \frac{2}{3} \\ \\ 3(x - 3) &= 2x \\ 3x - 9 &= 2x \\ 3x - 2x &= 9 \\ x &= 9 \\ \\ \text{Numerator} &= x - 6 \\ &= 9 - 6 \\ \color{green} \text{Numerator} &=\color{green} 3 \\ \color{green} \text{Denominator} &= \color{green}9 \\ \\ \text{Original fraction} &= \frac{\cancel3^1}{\cancel9_3} \\ \\ &= \frac{1}{3} \end{align*}
Answer Original fraction \( = \color{red} \boxed{\frac{1}{3}}\)
4. A man travelled \( \displaystyle \frac{2}{5}th \) of his journey by train, \( \displaystyle \frac{1}{3}rd \) by taxi, \( \displaystyle \frac{1}{6}th \) by bus and remaining 10 km on foot. Find the length of his total journey.
Solution
\begin{align*} \text{Let the total journey be} &= x \text{ km} \\ \\ \text{Distance travelled by train} &= \frac{2}{5}x \text{ km} \\ \\ \text{Distance travelled by taxi} &= \frac{1}{3}x \text{ km} \\ \\ \text{Distance travelled by bus} &= \frac{1}{6}x \text{ km} \\ \\ \text{Distance travelled by foot} &= 10 \text{ km} \\ \\ \\ \color{magenta}\frac{2}{5}x + \frac{1}{3}x + \frac{1}{6}x + 10 &= \color{magenta}x \\ \\ \frac{2}{5}x + \frac{1}{3}x + \frac{1}{6}x - x &= -10 \\ \\ \frac{2x {\color{green} \times 6}}{5 {\color{green} \times 6}} + \frac{x {\color{green} \times 10}}{3 {\color{green} \times 10}} + \frac{x {\color{green} \times 5}}{6 {\color{green} \times 5}} - \frac{x {\color{green} \times 30}}{1 {\color{green} \times 30}} &= -10 \\ \\ \frac{12x + 10x + 5x -30x}{30} &= -10 \\ \\ \frac{-3x}{30} &= -10 \\ \\ -3x &= -10 \times 30 \\ \\ x &= \frac{\cancel{-300}^{100}}{\cancel{-3}_1} \\ \\ x &= 100 \\ \end{align*}
Answer The total journey is \(\color{red} 100 \ km \).
5. A table costs \( \text{₹} 200 \) more than a chair. The price of two tables and three chairs is \( \text{₹} 1400 \). Find the cost of each.
Solution
\begin{align*} \text{Let cost of a chair} & = x \\ \text{Cost of a table} & = x + 200 \\\\ \color{magenta} 2(x + 200) + 3x &= \color{magenta} 1400 \\ 2x + 400 + 3x &= 1400 \\ 5x + 400 &= 1400 \\ 5x &= 1400 - 400 \\ 5x &= 1000 \\ x &= \frac{\cancel{1000}^{200}}{\cancel5_1} \\ x &= 200 \\ \\ \text{Cost of a chair} &= \text{₹} 200 \\ \\ \text{Cost of a table} &= x + 200 \\ &= 200 + 200 \\ \text{Cost of a table}&= \text{₹} 400 \end{align*}
Answer The cost of a chair is \(\color{red} \text{₹} 200 \) and the cost of a table is \(\color{red} \text{₹}400 \).
6. Anu is four years older than Sunil. Eight years ago, Anu was three times Sunil's age. Find the ages of Sunil and Anu.
Solution
\begin{align*} \text{Let Sunil's present age be} & = x \\ \text{ Then Anu's present age} & = x + 4 \\ \\ \text{Eight } & \text{years ago} \\ \text{Sunil's age} &= x - 8 \\ \text{Anu's age} &= x + 4 - 8 \\ & \implies x - 4 \\ \\ \text{Anu was three} & \text{ times Sunil's age} \\ \color{magenta} x - 4 &= \color{magenta} 3(x - 8) \\ x - 4 &= 3x - 24 \\ x - 3x &= 4 - 24 \\ -2x &= -20 \\ x &= \frac{\cancel{-20}^{10}}{\cancel{-2}_1} \\ x &= 10 \\ \\ \text{Sunil's present age} &= 10 \\ \text{Anu's present age} &= x + 4 \\ & = 10 + 4 \\ &= 14 \end{align*}
Answer Sunil is \(\color{red} 10 \) years old and Anu is \(\color{red} 14 \) years old.